Metamath Proof Explorer


Theorem hfmmval

Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Assertion hfmmval AT:A·fnT=xATx

Proof

Step Hyp Ref Expression
1 cnex V
2 ax-hilex V
3 1 2 elmap TT:
4 oveq1 f=Afgx=Agx
5 4 mpteq2dv f=Axfgx=xAgx
6 fveq1 g=Tgx=Tx
7 6 oveq2d g=TAgx=ATx
8 7 mpteq2dv g=TxAgx=xATx
9 df-hfmul ·fn=f,gxfgx
10 2 mptex xATxV
11 5 8 9 10 ovmpo ATA·fnT=xATx
12 3 11 sylan2br AT:A·fnT=xATx