Metamath Proof Explorer


Theorem hhcau

Description: The Cauchy sequences of Hilbert space. (Contributed by NM, 19-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hhlm.1 U=+norm
hhlm.2 D=IndMetU
Assertion hhcau Cauchy=CauD

Proof

Step Hyp Ref Expression
1 hhlm.1 U=+norm
2 hhlm.2 D=IndMetU
3 1 hhnv UNrmCVec
4 1 hhba =BaseSetU
5 1 3 4 2 h2hcau Cauchy=CauD