Metamath Proof Explorer


Theorem hhsssm

Description: The scalar multiplication operation on a subspace. (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhss.1 W=+H×H×HnormH
Assertion hhsssm ×H=𝑠OLDW

Proof

Step Hyp Ref Expression
1 hhss.1 W=+H×H×HnormH
2 eqid 𝑠OLDW=𝑠OLDW
3 2 smfval 𝑠OLDW=2nd1stW
4 1 fveq2i 1stW=1st+H×H×HnormH
5 opex +H×H×HV
6 normf norm:
7 ax-hilex V
8 fex norm:VnormV
9 6 7 8 mp2an normV
10 9 resex normHV
11 5 10 op1st 1st+H×H×HnormH=+H×H×H
12 4 11 eqtri 1stW=+H×H×H
13 12 fveq2i 2nd1stW=2nd+H×H×H
14 hilablo +AbelOp
15 resexg +AbelOp+H×HV
16 14 15 ax-mp +H×HV
17 hvmulex V
18 17 resex ×HV
19 16 18 op2nd 2nd+H×H×H=×H
20 3 13 19 3eqtrri ×H=𝑠OLDW