Metamath Proof Explorer


Theorem hl0lt1N

Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011) (New usage is discouraged.)

Ref Expression
Hypotheses hl0lt1.s <˙=<K
hl0lt1.z 0˙=0.K
hl0lt1.u 1˙=1.K
Assertion hl0lt1N KHL0˙<˙1˙

Proof

Step Hyp Ref Expression
1 hl0lt1.s <˙=<K
2 hl0lt1.z 0˙=0.K
3 hl0lt1.u 1˙=1.K
4 eqid BaseK=BaseK
5 4 1 2 3 hlhgt2 KHLxBaseK0˙<˙xx<˙1˙
6 hlpos KHLKPoset
7 6 adantr KHLxBaseKKPoset
8 hlop KHLKOP
9 8 adantr KHLxBaseKKOP
10 4 2 op0cl KOP0˙BaseK
11 9 10 syl KHLxBaseK0˙BaseK
12 simpr KHLxBaseKxBaseK
13 4 3 op1cl KOP1˙BaseK
14 9 13 syl KHLxBaseK1˙BaseK
15 4 1 plttr KPoset0˙BaseKxBaseK1˙BaseK0˙<˙xx<˙1˙0˙<˙1˙
16 7 11 12 14 15 syl13anc KHLxBaseK0˙<˙xx<˙1˙0˙<˙1˙
17 16 rexlimdva KHLxBaseK0˙<˙xx<˙1˙0˙<˙1˙
18 5 17 mpd KHL0˙<˙1˙