Metamath Proof Explorer


Theorem hlateq

Description: The equality of two Hilbert lattice elements is determined by the atoms under them. ( chrelat4i analog.) (Contributed by NM, 24-May-2012)

Ref Expression
Hypotheses hlatle.b B=BaseK
hlatle.l ˙=K
hlatle.a A=AtomsK
Assertion hlateq KHLXBYBpAp˙Xp˙YX=Y

Proof

Step Hyp Ref Expression
1 hlatle.b B=BaseK
2 hlatle.l ˙=K
3 hlatle.a A=AtomsK
4 ralbiim pAp˙Xp˙YpAp˙Xp˙YpAp˙Yp˙X
5 1 2 3 hlatle KHLXBYBX˙YpAp˙Xp˙Y
6 1 2 3 hlatle KHLYBXBY˙XpAp˙Yp˙X
7 6 3com23 KHLXBYBY˙XpAp˙Yp˙X
8 5 7 anbi12d KHLXBYBX˙YY˙XpAp˙Xp˙YpAp˙Yp˙X
9 4 8 bitr4id KHLXBYBpAp˙Xp˙YX˙YY˙X
10 hllat KHLKLat
11 1 2 latasymb KLatXBYBX˙YY˙XX=Y
12 10 11 syl3an1 KHLXBYBX˙YY˙XX=Y
13 9 12 bitrd KHLXBYBpAp˙Xp˙YX=Y