Metamath Proof Explorer


Theorem hlatj12

Description: Swap 1st and 2nd members of lattice join. Frequently-used special case of latj32 for atoms. (Contributed by NM, 4-Jun-2012)

Ref Expression
Hypotheses hlatjcom.j ˙=joinK
hlatjcom.a A=AtomsK
Assertion hlatj12 KHLPAQARAP˙Q˙R=Q˙P˙R

Proof

Step Hyp Ref Expression
1 hlatjcom.j ˙=joinK
2 hlatjcom.a A=AtomsK
3 1 2 hlatjcom KHLPAQAP˙Q=Q˙P
4 3 3adant3r3 KHLPAQARAP˙Q=Q˙P
5 4 oveq1d KHLPAQARAP˙Q˙R=Q˙P˙R
6 1 2 hlatjass KHLPAQARAP˙Q˙R=P˙Q˙R
7 simpl KHLPAQARAKHL
8 simpr2 KHLPAQARAQA
9 simpr1 KHLPAQARAPA
10 simpr3 KHLPAQARARA
11 1 2 hlatjass KHLQAPARAQ˙P˙R=Q˙P˙R
12 7 8 9 10 11 syl13anc KHLPAQARAQ˙P˙R=Q˙P˙R
13 5 6 12 3eqtr3d KHLPAQARAP˙Q˙R=Q˙P˙R