Metamath Proof Explorer


Theorem hlatj4

Description: Rearrangement of lattice join of 4 classes. Frequently-used special case of latj4 for atoms. (Contributed by NM, 9-Aug-2012)

Ref Expression
Hypotheses hlatjcom.j ˙=joinK
hlatjcom.a A=AtomsK
Assertion hlatj4 KHLPAQARASAP˙Q˙R˙S=P˙R˙Q˙S

Proof

Step Hyp Ref Expression
1 hlatjcom.j ˙=joinK
2 hlatjcom.a A=AtomsK
3 hllat KHLKLat
4 3 3ad2ant1 KHLPAQARASAKLat
5 simp2l KHLPAQARASAPA
6 eqid BaseK=BaseK
7 6 2 atbase PAPBaseK
8 5 7 syl KHLPAQARASAPBaseK
9 simp2r KHLPAQARASAQA
10 6 2 atbase QAQBaseK
11 9 10 syl KHLPAQARASAQBaseK
12 simp3l KHLPAQARASARA
13 6 2 atbase RARBaseK
14 12 13 syl KHLPAQARASARBaseK
15 simp3r KHLPAQARASASA
16 6 2 atbase SASBaseK
17 15 16 syl KHLPAQARASASBaseK
18 6 1 latj4 KLatPBaseKQBaseKRBaseKSBaseKP˙Q˙R˙S=P˙R˙Q˙S
19 4 8 11 14 17 18 syl122anc KHLPAQARASAP˙Q˙R˙S=P˙R˙Q˙S