Metamath Proof Explorer


Theorem hleqnid

Description: The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses ishlg.p P=BaseG
ishlg.i I=ItvG
ishlg.k K=hl𝒢G
ishlg.a φAP
ishlg.b φBP
ishlg.c φCP
hlln.1 φG𝒢Tarski
Assertion hleqnid φ¬AKAB

Proof

Step Hyp Ref Expression
1 ishlg.p P=BaseG
2 ishlg.i I=ItvG
3 ishlg.k K=hl𝒢G
4 ishlg.a φAP
5 ishlg.b φBP
6 ishlg.c φCP
7 hlln.1 φG𝒢Tarski
8 neirr ¬AA
9 8 a1i φ¬AA
10 4 adantr φAKABAP
11 5 adantr φAKABBP
12 7 adantr φAKABG𝒢Tarski
13 simpr φAKABAKAB
14 1 2 3 10 11 10 12 13 hlne1 φAKABAA
15 9 14 mtand φ¬AKAB