Metamath Proof Explorer


Theorem hlhilsmulOLD

Description: Obsolete version of hlhilsmul as of 6-Nov-2024. The scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015) (Revised by Mario Carneiro, 28-Jun-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses hlhilslem.h H=LHypK
hlhilslem.e E=EDRingKW
hlhilslem.u U=HLHilKW
hlhilslem.r R=ScalarU
hlhilslem.k φKHLWH
hlhilsmul.m ·˙=E
Assertion hlhilsmulOLD φ·˙=R

Proof

Step Hyp Ref Expression
1 hlhilslem.h H=LHypK
2 hlhilslem.e E=EDRingKW
3 hlhilslem.u U=HLHilKW
4 hlhilslem.r R=ScalarU
5 hlhilslem.k φKHLWH
6 hlhilsmul.m ·˙=E
7 df-mulr 𝑟=Slot3
8 3nn 3
9 3lt4 3<4
10 1 2 3 4 5 7 8 9 6 hlhilslemOLD φ·˙=R