Metamath Proof Explorer


Theorem hlim2

Description: The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion hlim2 F:AFvAx+yzynormFz-A<x

Proof

Step Hyp Ref Expression
1 breq2 w=AFvwFvA
2 oveq2 w=AFz-w=Fz-A
3 2 fveq2d w=AnormFz-w=normFz-A
4 3 breq1d w=AnormFz-w<xnormFz-A<x
5 4 rexralbidv w=AyzynormFz-w<xyzynormFz-A<x
6 5 ralbidv w=Ax+yzynormFz-w<xx+yzynormFz-A<x
7 1 6 bibi12d w=AFvwx+yzynormFz-w<xFvAx+yzynormFz-A<x
8 7 imbi2d w=AF:Fvwx+yzynormFz-w<xF:FvAx+yzynormFz-A<x
9 vex wV
10 9 hlimi FvwF:wx+yzynormFz-w<x
11 10 baib F:wFvwx+yzynormFz-w<x
12 11 expcom wF:Fvwx+yzynormFz-w<x
13 8 12 vtoclga AF:FvAx+yzynormFz-A<x
14 13 impcom F:AFvAx+yzynormFz-A<x