Metamath Proof Explorer


Theorem hlipf

Description: Mapping for Hilbert space inner product. (Contributed by NM, 19-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlipf.1 X=BaseSetU
hlipf.7 P=𝑖OLDU
Assertion hlipf UCHilOLDP:X×X

Proof

Step Hyp Ref Expression
1 hlipf.1 X=BaseSetU
2 hlipf.7 P=𝑖OLDU
3 hlnv UCHilOLDUNrmCVec
4 1 2 ipf UNrmCVecP:X×X
5 3 4 syl UCHilOLDP:X×X