Metamath Proof Explorer


Theorem hlln

Description: The half-line relation implies colinearity, part of Theorem 6.4 of Schwabhauser p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020)

Ref Expression
Hypotheses ishlg.p P=BaseG
ishlg.i I=ItvG
ishlg.k K=hl𝒢G
ishlg.a φAP
ishlg.b φBP
ishlg.c φCP
hlln.1 φG𝒢Tarski
hlln.l L=Line𝒢G
hlln.2 φAKCB
Assertion hlln φABLC

Proof

Step Hyp Ref Expression
1 ishlg.p P=BaseG
2 ishlg.i I=ItvG
3 ishlg.k K=hl𝒢G
4 ishlg.a φAP
5 ishlg.b φBP
6 ishlg.c φCP
7 hlln.1 φG𝒢Tarski
8 hlln.l L=Line𝒢G
9 hlln.2 φAKCB
10 eqid distG=distG
11 7 adantr φACIBG𝒢Tarski
12 6 adantr φACIBCP
13 4 adantr φACIBAP
14 5 adantr φACIBBP
15 simpr φACIBACIB
16 1 10 2 11 12 13 14 15 tgbtwncom φACIBABIC
17 16 3mix1d φACIBABICBAICCBIA
18 7 adantr φBCIAG𝒢Tarski
19 6 adantr φBCIACP
20 5 adantr φBCIABP
21 4 adantr φBCIAAP
22 simpr φBCIABCIA
23 1 10 2 18 19 20 21 22 tgbtwncom φBCIABAIC
24 23 3mix2d φBCIAABICBAICCBIA
25 1 2 3 4 5 6 7 ishlg φAKCBACBCACIBBCIA
26 9 25 mpbid φACBCACIBBCIA
27 26 simp3d φACIBBCIA
28 17 24 27 mpjaodan φABICBAICCBIA
29 26 simp2d φBC
30 1 8 2 7 5 6 29 4 tgellng φABLCABICBAICCBIA
31 28 30 mpbird φABLC