Metamath Proof Explorer


Theorem hlmet

Description: The induced metric on a complex Hilbert space. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlcmet.x X=BaseSetU
hlcmet.8 D=IndMetU
Assertion hlmet UCHilOLDDMetX

Proof

Step Hyp Ref Expression
1 hlcmet.x X=BaseSetU
2 hlcmet.8 D=IndMetU
3 1 2 hlcmet UCHilOLDDCMetX
4 cmetmet DCMetXDMetX
5 3 4 syl UCHilOLDDMetX