Metamath Proof Explorer


Theorem hlpar2

Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlpar2.1 X=BaseSetU
hlpar2.2 G=+vU
hlpar2.3 M=-vU
hlpar2.6 N=normCVU
Assertion hlpar2 UCHilOLDAXBXNAGB2+NAMB2=2NA2+NB2

Proof

Step Hyp Ref Expression
1 hlpar2.1 X=BaseSetU
2 hlpar2.2 G=+vU
3 hlpar2.3 M=-vU
4 hlpar2.6 N=normCVU
5 hlph UCHilOLDUCPreHilOLD
6 1 2 3 4 phpar2 UCPreHilOLDAXBXNAGB2+NAMB2=2NA2+NB2
7 5 6 syl3an1 UCHilOLDAXBXNAGB2+NAMB2=2NA2+NB2