Metamath Proof Explorer


Theorem hlrelat3

Description: The Hilbert lattice is relatively atomic. Stronger version of hlrelat . (Contributed by NM, 2-May-2012)

Ref Expression
Hypotheses hlrelat3.b B=BaseK
hlrelat3.l ˙=K
hlrelat3.s <˙=<K
hlrelat3.j ˙=joinK
hlrelat3.c C=K
hlrelat3.a A=AtomsK
Assertion hlrelat3 KHLXBYBX<˙YpAXCX˙pX˙p˙Y

Proof

Step Hyp Ref Expression
1 hlrelat3.b B=BaseK
2 hlrelat3.l ˙=K
3 hlrelat3.s <˙=<K
4 hlrelat3.j ˙=joinK
5 hlrelat3.c C=K
6 hlrelat3.a A=AtomsK
7 1 2 3 6 hlrelat1 KHLXBYBX<˙YpA¬p˙Xp˙Y
8 7 imp KHLXBYBX<˙YpA¬p˙Xp˙Y
9 simp3l KHLXBYBX<˙YpA¬p˙Xp˙Y¬p˙X
10 simp1l1 KHLXBYBX<˙YpA¬p˙Xp˙YKHL
11 simp1l2 KHLXBYBX<˙YpA¬p˙Xp˙YXB
12 simp2 KHLXBYBX<˙YpA¬p˙Xp˙YpA
13 1 2 4 5 6 cvr1 KHLXBpA¬p˙XXCX˙p
14 10 11 12 13 syl3anc KHLXBYBX<˙YpA¬p˙Xp˙Y¬p˙XXCX˙p
15 9 14 mpbid KHLXBYBX<˙YpA¬p˙Xp˙YXCX˙p
16 simp1l KHLXBYBX<˙YpA¬p˙Xp˙YKHLXBYB
17 simp1r KHLXBYBX<˙YpA¬p˙Xp˙YX<˙Y
18 2 3 pltle KHLXBYBX<˙YX˙Y
19 16 17 18 sylc KHLXBYBX<˙YpA¬p˙Xp˙YX˙Y
20 simp3r KHLXBYBX<˙YpA¬p˙Xp˙Yp˙Y
21 10 hllatd KHLXBYBX<˙YpA¬p˙Xp˙YKLat
22 1 6 atbase pApB
23 12 22 syl KHLXBYBX<˙YpA¬p˙Xp˙YpB
24 simp1l3 KHLXBYBX<˙YpA¬p˙Xp˙YYB
25 1 2 4 latjle12 KLatXBpBYBX˙Yp˙YX˙p˙Y
26 21 11 23 24 25 syl13anc KHLXBYBX<˙YpA¬p˙Xp˙YX˙Yp˙YX˙p˙Y
27 19 20 26 mpbi2and KHLXBYBX<˙YpA¬p˙Xp˙YX˙p˙Y
28 15 27 jca KHLXBYBX<˙YpA¬p˙Xp˙YXCX˙pX˙p˙Y
29 28 3exp KHLXBYBX<˙YpA¬p˙Xp˙YXCX˙pX˙p˙Y
30 29 reximdvai KHLXBYBX<˙YpA¬p˙Xp˙YpAXCX˙pX˙p˙Y
31 8 30 mpd KHLXBYBX<˙YpAXCX˙pX˙p˙Y