Description: A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S8) of Beran p. 95. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ho0.1 | |
|
Assertion | ho01i | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ho0.1 | |
|
2 | ffn | |
|
3 | 1 2 | ax-mp | |
4 | ax-hv0cl | |
|
5 | 4 | elexi | |
6 | 5 | fconst | |
7 | ffn | |
|
8 | 6 7 | ax-mp | |
9 | eqfnfv | |
|
10 | 3 8 9 | mp2an | |
11 | df0op2 | |
|
12 | df-ch0 | |
|
13 | 12 | xpeq2i | |
14 | 11 13 | eqtri | |
15 | 14 | eqeq2i | |
16 | 1 | ffvelcdmi | |
17 | hial0 | |
|
18 | 16 17 | syl | |
19 | 5 | fvconst2 | |
20 | 19 | eqeq2d | |
21 | 18 20 | bitr4d | |
22 | 21 | ralbiia | |
23 | 10 15 22 | 3bitr4ri | |