Metamath Proof Explorer


Theorem ho01i

Description: A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S8) of Beran p. 95. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypothesis ho0.1 T:
Assertion ho01i xyTxihy=0T=0hop

Proof

Step Hyp Ref Expression
1 ho0.1 T:
2 ffn T:TFn
3 1 2 ax-mp TFn
4 ax-hv0cl 0
5 4 elexi 0V
6 5 fconst ×0:0
7 ffn ×0:0×0Fn
8 6 7 ax-mp ×0Fn
9 eqfnfv TFn×0FnT=×0xTx=×0x
10 3 8 9 mp2an T=×0xTx=×0x
11 df0op2 0hop=×0
12 df-ch0 0=0
13 12 xpeq2i ×0=×0
14 11 13 eqtri 0hop=×0
15 14 eqeq2i T=0hopT=×0
16 1 ffvelcdmi xTx
17 hial0 TxyTxihy=0Tx=0
18 16 17 syl xyTxihy=0Tx=0
19 5 fvconst2 x×0x=0
20 19 eqeq2d xTx=×0xTx=0
21 18 20 bitr4d xyTxihy=0Tx=×0x
22 21 ralbiia xyTxihy=0xTx=×0x
23 10 15 22 3bitr4ri xyTxihy=0T=0hop