Metamath Proof Explorer


Theorem ho01i

Description: A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S8) of Beran p. 95. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypothesis ho0.1 T :
Assertion ho01i x y T x ih y = 0 T = 0 hop

Proof

Step Hyp Ref Expression
1 ho0.1 T :
2 ffn T : T Fn
3 1 2 ax-mp T Fn
4 ax-hv0cl 0
5 4 elexi 0 V
6 5 fconst × 0 : 0
7 ffn × 0 : 0 × 0 Fn
8 6 7 ax-mp × 0 Fn
9 eqfnfv T Fn × 0 Fn T = × 0 x T x = × 0 x
10 3 8 9 mp2an T = × 0 x T x = × 0 x
11 df0op2 0 hop = × 0
12 df-ch0 0 = 0
13 12 xpeq2i × 0 = × 0
14 11 13 eqtri 0 hop = × 0
15 14 eqeq2i T = 0 hop T = × 0
16 1 ffvelrni x T x
17 hial0 T x y T x ih y = 0 T x = 0
18 16 17 syl x y T x ih y = 0 T x = 0
19 5 fvconst2 x × 0 x = 0
20 19 eqeq2d x T x = × 0 x T x = 0
21 18 20 bitr4d x y T x ih y = 0 T x = × 0 x
22 21 ralbiia x y T x ih y = 0 x T x = × 0 x
23 10 15 22 3bitr4ri x y T x ih y = 0 T = 0 hop