Metamath Proof Explorer


Theorem ho0coi

Description: Composition of the zero operator and a Hilbert space operator. (Contributed by NM, 9-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypothesis hoaddrid.1 T:
Assertion ho0coi 0hopT=0hop

Proof

Step Hyp Ref Expression
1 hoaddrid.1 T:
2 1 ffvelcdmi xTx
3 ho0val Tx0hopTx=0
4 2 3 syl x0hopTx=0
5 ho0f 0hop:
6 5 1 hocoi x0hopTx=0hopTx
7 ho0val x0hopx=0
8 4 6 7 3eqtr4d x0hopTx=0hopx
9 8 rgen x0hopTx=0hopx
10 5 1 hocofi 0hopT:
11 10 5 hoeqi x0hopTx=0hopx0hopT=0hop
12 9 11 mpbi 0hopT=0hop