Metamath Proof Explorer


Theorem hoadd32

Description: Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoadd32 R:S:T:R+opS+opT=R+opT+opS

Proof

Step Hyp Ref Expression
1 hoaddcom S:T:S+opT=T+opS
2 1 3adant1 R:S:T:S+opT=T+opS
3 2 oveq2d R:S:T:R+opS+opT=R+opT+opS
4 hoaddass R:S:T:R+opS+opT=R+opS+opT
5 hoaddass R:T:S:R+opT+opS=R+opT+opS
6 5 3com23 R:S:T:R+opT+opS=R+opT+opS
7 3 4 6 3eqtr4d R:S:T:R+opS+opT=R+opT+opS