Metamath Proof Explorer


Theorem hoaddcl

Description: The sum of Hilbert space operators is an operator. (Contributed by NM, 21-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion hoaddcl S:T:S+opT:

Proof

Step Hyp Ref Expression
1 ffvelcdm S:xSx
2 1 adantlr S:T:xSx
3 ffvelcdm T:xTx
4 3 adantll S:T:xTx
5 hvaddcl SxTxSx+Tx
6 2 4 5 syl2anc S:T:xSx+Tx
7 6 fmpttd S:T:xSx+Tx:
8 hosmval S:T:S+opT=xSx+Tx
9 8 feq1d S:T:S+opT:xSx+Tx:
10 7 9 mpbird S:T:S+opT: