Metamath Proof Explorer


Theorem hoddi

Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri does not require linearity.) (Contributed by NM, 23-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoddi RLinOpS:T:RS-opT=RS-opRT

Proof

Step Hyp Ref Expression
1 coeq1 R=ifRLinOpR0hopRS-opT=ifRLinOpR0hopS-opT
2 coeq1 R=ifRLinOpR0hopRS=ifRLinOpR0hopS
3 coeq1 R=ifRLinOpR0hopRT=ifRLinOpR0hopT
4 2 3 oveq12d R=ifRLinOpR0hopRS-opRT=ifRLinOpR0hopS-opifRLinOpR0hopT
5 1 4 eqeq12d R=ifRLinOpR0hopRS-opT=RS-opRTifRLinOpR0hopS-opT=ifRLinOpR0hopS-opifRLinOpR0hopT
6 oveq1 S=ifS:S0hopS-opT=ifS:S0hop-opT
7 6 coeq2d S=ifS:S0hopifRLinOpR0hopS-opT=ifRLinOpR0hopifS:S0hop-opT
8 coeq2 S=ifS:S0hopifRLinOpR0hopS=ifRLinOpR0hopifS:S0hop
9 8 oveq1d S=ifS:S0hopifRLinOpR0hopS-opifRLinOpR0hopT=ifRLinOpR0hopifS:S0hop-opifRLinOpR0hopT
10 7 9 eqeq12d S=ifS:S0hopifRLinOpR0hopS-opT=ifRLinOpR0hopS-opifRLinOpR0hopTifRLinOpR0hopifS:S0hop-opT=ifRLinOpR0hopifS:S0hop-opifRLinOpR0hopT
11 oveq2 T=ifT:T0hopifS:S0hop-opT=ifS:S0hop-opifT:T0hop
12 11 coeq2d T=ifT:T0hopifRLinOpR0hopifS:S0hop-opT=ifRLinOpR0hopifS:S0hop-opifT:T0hop
13 coeq2 T=ifT:T0hopifRLinOpR0hopT=ifRLinOpR0hopifT:T0hop
14 13 oveq2d T=ifT:T0hopifRLinOpR0hopifS:S0hop-opifRLinOpR0hopT=ifRLinOpR0hopifS:S0hop-opifRLinOpR0hopifT:T0hop
15 12 14 eqeq12d T=ifT:T0hopifRLinOpR0hopifS:S0hop-opT=ifRLinOpR0hopifS:S0hop-opifRLinOpR0hopTifRLinOpR0hopifS:S0hop-opifT:T0hop=ifRLinOpR0hopifS:S0hop-opifRLinOpR0hopifT:T0hop
16 0lnop 0hopLinOp
17 16 elimel ifRLinOpR0hopLinOp
18 ho0f 0hop:
19 18 elimf ifS:S0hop:
20 18 elimf ifT:T0hop:
21 17 19 20 hoddii ifRLinOpR0hopifS:S0hop-opifT:T0hop=ifRLinOpR0hopifS:S0hop-opifRLinOpR0hopifT:T0hop
22 5 10 15 21 dedth3h RLinOpS:T:RS-opT=RS-opRT