Metamath Proof Explorer


Theorem hoddii

Description: Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri does not require linearity.) (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hoddi.1 RLinOp
hoddi.2 S:
hoddi.3 T:
Assertion hoddii RS-opT=RS-opRT

Proof

Step Hyp Ref Expression
1 hoddi.1 RLinOp
2 hoddi.2 S:
3 hoddi.3 T:
4 2 ffvelcdmi xSx
5 3 ffvelcdmi xTx
6 1 lnopsubi SxTxRSx-Tx=RSx-RTx
7 4 5 6 syl2anc xRSx-Tx=RSx-RTx
8 hodval S:T:xS-opTx=Sx-Tx
9 2 3 8 mp3an12 xS-opTx=Sx-Tx
10 9 fveq2d xRS-opTx=RSx-Tx
11 1 lnopfi R:
12 11 2 hocoi xRSx=RSx
13 11 3 hocoi xRTx=RTx
14 12 13 oveq12d xRSx-RTx=RSx-RTx
15 7 10 14 3eqtr4d xRS-opTx=RSx-RTx
16 2 3 hosubcli S-opT:
17 11 16 hocoi xRS-opTx=RS-opTx
18 11 2 hocofi RS:
19 11 3 hocofi RT:
20 hodval RS:RT:xRS-opRTx=RSx-RTx
21 18 19 20 mp3an12 xRS-opRTx=RSx-RTx
22 15 17 21 3eqtr4d xRS-opTx=RS-opRTx
23 22 rgen xRS-opTx=RS-opRTx
24 11 16 hocofi RS-opT:
25 18 19 hosubcli RS-opRT:
26 24 25 hoeqi xRS-opTx=RS-opRTxRS-opT=RS-opRT
27 23 26 mpbi RS-opT=RS-opRT