Metamath Proof Explorer


Theorem hof1fval

Description: The object part of the Hom functor is the Homf operation, which is just a functionalized version of Hom . That is, it is a two argument function, which maps X , Y to the set of morphisms from X to Y . (Contributed by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses hofval.m M = Hom F C
hofval.c φ C Cat
Assertion hof1fval φ 1 st M = Hom 𝑓 C

Proof

Step Hyp Ref Expression
1 hofval.m M = Hom F C
2 hofval.c φ C Cat
3 eqid Base C = Base C
4 eqid Hom C = Hom C
5 eqid comp C = comp C
6 1 2 3 4 5 hofval φ M = Hom 𝑓 C x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f
7 fvex Hom 𝑓 C V
8 fvex Base C V
9 8 8 xpex Base C × Base C V
10 9 9 mpoex x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f V
11 7 10 op1std M = Hom 𝑓 C x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f 1 st M = Hom 𝑓 C
12 6 11 syl φ 1 st M = Hom 𝑓 C