Description: Value of the Hom functor, which is a bifunctor (a functor of two arguments), contravariant in the first argument and covariant in the second, from ( oppCatC ) X. C to SetCat , whose object part is the hom-function Hom , and with morphism part given by pre- and post-composition. (Contributed by Mario Carneiro, 15-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hofval.m | |
|
hofval.c | |
||
hofval.b | |
||
hofval.h | |
||
hofval.o | |
||
Assertion | hofval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hofval.m | |
|
2 | hofval.c | |
|
3 | hofval.b | |
|
4 | hofval.h | |
|
5 | hofval.o | |
|
6 | df-hof | |
|
7 | simpr | |
|
8 | 7 | fveq2d | |
9 | fvexd | |
|
10 | 7 | fveq2d | |
11 | 10 3 | eqtr4di | |
12 | simpr | |
|
13 | 12 | sqxpeqd | |
14 | simplr | |
|
15 | 14 | fveq2d | |
16 | 15 4 | eqtr4di | |
17 | 16 | oveqd | |
18 | 16 | oveqd | |
19 | 16 | fveq1d | |
20 | 14 | fveq2d | |
21 | 20 5 | eqtr4di | |
22 | 21 | oveqd | |
23 | 21 | oveqd | |
24 | 23 | oveqd | |
25 | eqidd | |
|
26 | 22 24 25 | oveq123d | |
27 | 19 26 | mpteq12dv | |
28 | 17 18 27 | mpoeq123dv | |
29 | 13 13 28 | mpoeq123dv | |
30 | 9 11 29 | csbied2 | |
31 | 8 30 | opeq12d | |
32 | opex | |
|
33 | 32 | a1i | |
34 | 6 31 2 33 | fvmptd2 | |
35 | 1 34 | eqtrid | |