Metamath Proof Explorer


Theorem homarcl2

Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses homahom.h H=HomaC
homarcl2.b B=BaseC
Assertion homarcl2 FXHYXBYB

Proof

Step Hyp Ref Expression
1 homahom.h H=HomaC
2 homarcl2.b B=BaseC
3 elfvdm FHXYXYdomH
4 df-ov XHY=HXY
5 3 4 eleq2s FXHYXYdomH
6 1 homarcl FXHYCCat
7 1 2 6 homaf FXHYH:B×B𝒫B×B×V
8 7 fdmd FXHYdomH=B×B
9 5 8 eleqtrd FXHYXYB×B
10 opelxp XYB×BXBYB
11 9 10 sylib FXHYXBYB