Metamath Proof Explorer


Theorem honegsubi

Description: Relationship between Hilbert operator addition and subtraction. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hodseq.2 S:
hodseq.3 T:
Assertion honegsubi S+op-1·opT=S-opT

Proof

Step Hyp Ref Expression
1 hodseq.2 S:
2 hodseq.3 T:
3 neg1cn 1
4 homulcl 1T:-1·opT:
5 3 2 4 mp2an -1·opT:
6 hosval S:-1·opT:xS+op-1·opTx=Sx+-1·opTx
7 1 5 6 mp3an12 xS+op-1·opTx=Sx+-1·opTx
8 1 ffvelcdmi xSx
9 2 ffvelcdmi xTx
10 hvsubval SxTxSx-Tx=Sx+-1Tx
11 8 9 10 syl2anc xSx-Tx=Sx+-1Tx
12 homval 1T:x-1·opTx=-1Tx
13 3 2 12 mp3an12 x-1·opTx=-1Tx
14 13 oveq2d xSx+-1·opTx=Sx+-1Tx
15 11 14 eqtr4d xSx-Tx=Sx+-1·opTx
16 7 15 eqtr4d xS+op-1·opTx=Sx-Tx
17 hodval S:T:xS-opTx=Sx-Tx
18 1 2 17 mp3an12 xS-opTx=Sx-Tx
19 16 18 eqtr4d xS+op-1·opTx=S-opTx
20 19 rgen xS+op-1·opTx=S-opTx
21 1 5 hoaddcli S+op-1·opT:
22 1 2 hosubcli S-opT:
23 21 22 hoeqi xS+op-1·opTx=S-opTxS+op-1·opT=S-opT
24 20 23 mpbi S+op-1·opT=S-opT