Metamath Proof Explorer


Theorem hosubsub4

Description: Law for double subtraction of Hilbert space operators. (Contributed by NM, 25-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hosubsub4 S:T:U:S-opT-opU=S-opT+opU

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 homulcl 1U:-1·opU:
3 1 2 mpan U:-1·opU:
4 hosubsub S:T:-1·opU:S-opT-op-1·opU=S-opT+op-1·opU
5 3 4 syl3an3 S:T:U:S-opT-op-1·opU=S-opT+op-1·opU
6 hosubneg T:U:T-op-1·opU=T+opU
7 6 3adant1 S:T:U:T-op-1·opU=T+opU
8 7 oveq2d S:T:U:S-opT-op-1·opU=S-opT+opU
9 hosubcl S:T:S-opT:
10 honegsub S-opT:U:S-opT+op-1·opU=S-opT-opU
11 9 10 stoic3 S:T:U:S-opT+op-1·opU=S-opT-opU
12 5 8 11 3eqtr3rd S:T:U:S-opT-opU=S-opT+opU