Metamath Proof Explorer


Theorem hsmexlem3

Description: Lemma for hsmex . Clear I hypothesis and extend previous result by dominance. Note that this could be substantially strengthened, e.g., using the weak Hartogs function, but all we need here is that there be *some* dominating ordinal. (Contributed by Stefan O'Rear, 14-Feb-2015) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses hsmexlem.f F=OrdIsoEB
hsmexlem.g G=OrdIsoEaAB
Assertion hsmexlem3 A*DCOnaAB𝒫OndomFCdomGhar𝒫D×C

Proof

Step Hyp Ref Expression
1 hsmexlem.f F=OrdIsoEB
2 hsmexlem.g G=OrdIsoEaAB
3 wdomref COnC*C
4 xpwdomg A*DC*CA×C*D×C
5 3 4 sylan2 A*DCOnA×C*D×C
6 wdompwdom A×C*D×C𝒫A×C𝒫D×C
7 harword 𝒫A×C𝒫D×Char𝒫A×Char𝒫D×C
8 5 6 7 3syl A*DCOnhar𝒫A×Char𝒫D×C
9 8 adantr A*DCOnaAB𝒫OndomFChar𝒫A×Char𝒫D×C
10 relwdom Rel*
11 10 brrelex1i A*DAV
12 11 adantr A*DCOnAV
13 12 adantr A*DCOnaAB𝒫OndomFCAV
14 simplr A*DCOnaAB𝒫OndomFCCOn
15 simpr A*DCOnaAB𝒫OndomFCaAB𝒫OndomFC
16 1 2 hsmexlem2 AVCOnaAB𝒫OndomFCdomGhar𝒫A×C
17 13 14 15 16 syl3anc A*DCOnaAB𝒫OndomFCdomGhar𝒫A×C
18 9 17 sseldd A*DCOnaAB𝒫OndomFCdomGhar𝒫D×C