| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hsmexlem.f |
|
| 2 |
|
hsmexlem.g |
|
| 3 |
|
elpwi |
|
| 4 |
3
|
adantr |
|
| 5 |
4
|
ralimi |
|
| 6 |
|
iunss |
|
| 7 |
5 6
|
sylibr |
|
| 8 |
7
|
3ad2ant3 |
|
| 9 |
|
xpexg |
|
| 10 |
9
|
3adant3 |
|
| 11 |
|
nfv |
|
| 12 |
|
nfra1 |
|
| 13 |
11 12
|
nfan |
|
| 14 |
|
rsp |
|
| 15 |
|
onelss |
|
| 16 |
15
|
imp |
|
| 17 |
16
|
adantrl |
|
| 18 |
17
|
3adant3 |
|
| 19 |
1
|
oismo |
|
| 20 |
3 19
|
syl |
|
| 21 |
20
|
ad2antrl |
|
| 22 |
21
|
simprd |
|
| 23 |
1
|
oif |
|
| 24 |
22 23
|
jctil |
|
| 25 |
|
dffo2 |
|
| 26 |
24 25
|
sylibr |
|
| 27 |
|
dffo3 |
|
| 28 |
27
|
simprbi |
|
| 29 |
|
rsp |
|
| 30 |
26 28 29
|
3syl |
|
| 31 |
30
|
3impia |
|
| 32 |
|
ssrexv |
|
| 33 |
18 31 32
|
sylc |
|
| 34 |
33
|
3exp |
|
| 35 |
14 34
|
sylan9r |
|
| 36 |
13 35
|
reximdai |
|
| 37 |
36
|
3adant1 |
|
| 38 |
|
nfv |
|
| 39 |
|
nfcv |
|
| 40 |
|
nfcv |
|
| 41 |
|
nfcsb1v |
|
| 42 |
40 41
|
nfoi |
|
| 43 |
|
nfcv |
|
| 44 |
42 43
|
nffv |
|
| 45 |
44
|
nfeq2 |
|
| 46 |
39 45
|
nfrexw |
|
| 47 |
|
csbeq1a |
|
| 48 |
|
oieq2 |
|
| 49 |
47 48
|
syl |
|
| 50 |
1 49
|
eqtrid |
|
| 51 |
50
|
fveq1d |
|
| 52 |
51
|
eqeq2d |
|
| 53 |
52
|
rexbidv |
|
| 54 |
38 46 53
|
cbvrexw |
|
| 55 |
37 54
|
imbitrdi |
|
| 56 |
|
eliun |
|
| 57 |
|
vex |
|
| 58 |
|
vex |
|
| 59 |
57 58
|
op1std |
|
| 60 |
59
|
csbeq1d |
|
| 61 |
|
oieq2 |
|
| 62 |
60 61
|
syl |
|
| 63 |
57 58
|
op2ndd |
|
| 64 |
62 63
|
fveq12d |
|
| 65 |
64
|
eqeq2d |
|
| 66 |
65
|
rexxp |
|
| 67 |
55 56 66
|
3imtr4g |
|
| 68 |
67
|
imp |
|
| 69 |
10 68
|
wdomd |
|
| 70 |
2
|
hsmexlem1 |
|
| 71 |
8 69 70
|
syl2anc |
|