Metamath Proof Explorer


Theorem hsmexlem1

Description: Lemma for hsmex . Bound the order type of a limited-cardinality set of ordinals. (Contributed by Stefan O'Rear, 14-Feb-2015) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypothesis hsmexlem.o O = OrdIso E A
Assertion hsmexlem1 A On A * B dom O har 𝒫 B

Proof

Step Hyp Ref Expression
1 hsmexlem.o O = OrdIso E A
2 1 oicl Ord dom O
3 relwdom Rel *
4 3 brrelex1i A * B A V
5 4 adantl A On A * B A V
6 uniexg A V A V
7 sucexg A V suc A V
8 5 6 7 3syl A On A * B suc A V
9 1 oif O : dom O A
10 onsucuni A On A suc A
11 10 adantr A On A * B A suc A
12 fss O : dom O A A suc A O : dom O suc A
13 9 11 12 sylancr A On A * B O : dom O suc A
14 1 oismo A On Smo O ran O = A
15 14 adantr A On A * B Smo O ran O = A
16 15 simpld A On A * B Smo O
17 ssorduni A On Ord A
18 17 adantr A On A * B Ord A
19 ordsuc Ord A Ord suc A
20 18 19 sylib A On A * B Ord suc A
21 smorndom O : dom O suc A Smo O Ord suc A dom O suc A
22 13 16 20 21 syl3anc A On A * B dom O suc A
23 8 22 ssexd A On A * B dom O V
24 elong dom O V dom O On Ord dom O
25 23 24 syl A On A * B dom O On Ord dom O
26 2 25 mpbiri A On A * B dom O On
27 canth2g dom O V dom O 𝒫 dom O
28 sdomdom dom O 𝒫 dom O dom O 𝒫 dom O
29 23 27 28 3syl A On A * B dom O 𝒫 dom O
30 simpl A On A * B A On
31 epweon E We On
32 wess A On E We On E We A
33 30 31 32 mpisyl A On A * B E We A
34 epse E Se A
35 1 oiiso2 E We A E Se A O Isom E , E dom O ran O
36 33 34 35 sylancl A On A * B O Isom E , E dom O ran O
37 isof1o O Isom E , E dom O ran O O : dom O 1-1 onto ran O
38 36 37 syl A On A * B O : dom O 1-1 onto ran O
39 15 simprd A On A * B ran O = A
40 39 f1oeq3d A On A * B O : dom O 1-1 onto ran O O : dom O 1-1 onto A
41 38 40 mpbid A On A * B O : dom O 1-1 onto A
42 f1oen2g dom O On A V O : dom O 1-1 onto A dom O A
43 26 5 41 42 syl3anc A On A * B dom O A
44 endom dom O A dom O A
45 domwdom dom O A dom O * A
46 43 44 45 3syl A On A * B dom O * A
47 wdomtr dom O * A A * B dom O * B
48 46 47 sylancom A On A * B dom O * B
49 wdompwdom dom O * B 𝒫 dom O 𝒫 B
50 48 49 syl A On A * B 𝒫 dom O 𝒫 B
51 domtr dom O 𝒫 dom O 𝒫 dom O 𝒫 B dom O 𝒫 B
52 29 50 51 syl2anc A On A * B dom O 𝒫 B
53 elharval dom O har 𝒫 B dom O On dom O 𝒫 B
54 26 52 53 sylanbrc A On A * B dom O har 𝒫 B