| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hsmexlem.f |
|- F = OrdIso ( _E , B ) |
| 2 |
|
hsmexlem.g |
|- G = OrdIso ( _E , U_ a e. A B ) |
| 3 |
|
elpwi |
|- ( B e. ~P On -> B C_ On ) |
| 4 |
3
|
adantr |
|- ( ( B e. ~P On /\ dom F e. C ) -> B C_ On ) |
| 5 |
4
|
ralimi |
|- ( A. a e. A ( B e. ~P On /\ dom F e. C ) -> A. a e. A B C_ On ) |
| 6 |
|
iunss |
|- ( U_ a e. A B C_ On <-> A. a e. A B C_ On ) |
| 7 |
5 6
|
sylibr |
|- ( A. a e. A ( B e. ~P On /\ dom F e. C ) -> U_ a e. A B C_ On ) |
| 8 |
7
|
3ad2ant3 |
|- ( ( A e. V /\ C e. On /\ A. a e. A ( B e. ~P On /\ dom F e. C ) ) -> U_ a e. A B C_ On ) |
| 9 |
|
xpexg |
|- ( ( A e. V /\ C e. On ) -> ( A X. C ) e. _V ) |
| 10 |
9
|
3adant3 |
|- ( ( A e. V /\ C e. On /\ A. a e. A ( B e. ~P On /\ dom F e. C ) ) -> ( A X. C ) e. _V ) |
| 11 |
|
nfv |
|- F/ a C e. On |
| 12 |
|
nfra1 |
|- F/ a A. a e. A ( B e. ~P On /\ dom F e. C ) |
| 13 |
11 12
|
nfan |
|- F/ a ( C e. On /\ A. a e. A ( B e. ~P On /\ dom F e. C ) ) |
| 14 |
|
rsp |
|- ( A. a e. A ( B e. ~P On /\ dom F e. C ) -> ( a e. A -> ( B e. ~P On /\ dom F e. C ) ) ) |
| 15 |
|
onelss |
|- ( C e. On -> ( dom F e. C -> dom F C_ C ) ) |
| 16 |
15
|
imp |
|- ( ( C e. On /\ dom F e. C ) -> dom F C_ C ) |
| 17 |
16
|
adantrl |
|- ( ( C e. On /\ ( B e. ~P On /\ dom F e. C ) ) -> dom F C_ C ) |
| 18 |
17
|
3adant3 |
|- ( ( C e. On /\ ( B e. ~P On /\ dom F e. C ) /\ b e. B ) -> dom F C_ C ) |
| 19 |
1
|
oismo |
|- ( B C_ On -> ( Smo F /\ ran F = B ) ) |
| 20 |
3 19
|
syl |
|- ( B e. ~P On -> ( Smo F /\ ran F = B ) ) |
| 21 |
20
|
ad2antrl |
|- ( ( C e. On /\ ( B e. ~P On /\ dom F e. C ) ) -> ( Smo F /\ ran F = B ) ) |
| 22 |
21
|
simprd |
|- ( ( C e. On /\ ( B e. ~P On /\ dom F e. C ) ) -> ran F = B ) |
| 23 |
1
|
oif |
|- F : dom F --> B |
| 24 |
22 23
|
jctil |
|- ( ( C e. On /\ ( B e. ~P On /\ dom F e. C ) ) -> ( F : dom F --> B /\ ran F = B ) ) |
| 25 |
|
dffo2 |
|- ( F : dom F -onto-> B <-> ( F : dom F --> B /\ ran F = B ) ) |
| 26 |
24 25
|
sylibr |
|- ( ( C e. On /\ ( B e. ~P On /\ dom F e. C ) ) -> F : dom F -onto-> B ) |
| 27 |
|
dffo3 |
|- ( F : dom F -onto-> B <-> ( F : dom F --> B /\ A. b e. B E. e e. dom F b = ( F ` e ) ) ) |
| 28 |
27
|
simprbi |
|- ( F : dom F -onto-> B -> A. b e. B E. e e. dom F b = ( F ` e ) ) |
| 29 |
|
rsp |
|- ( A. b e. B E. e e. dom F b = ( F ` e ) -> ( b e. B -> E. e e. dom F b = ( F ` e ) ) ) |
| 30 |
26 28 29
|
3syl |
|- ( ( C e. On /\ ( B e. ~P On /\ dom F e. C ) ) -> ( b e. B -> E. e e. dom F b = ( F ` e ) ) ) |
| 31 |
30
|
3impia |
|- ( ( C e. On /\ ( B e. ~P On /\ dom F e. C ) /\ b e. B ) -> E. e e. dom F b = ( F ` e ) ) |
| 32 |
|
ssrexv |
|- ( dom F C_ C -> ( E. e e. dom F b = ( F ` e ) -> E. e e. C b = ( F ` e ) ) ) |
| 33 |
18 31 32
|
sylc |
|- ( ( C e. On /\ ( B e. ~P On /\ dom F e. C ) /\ b e. B ) -> E. e e. C b = ( F ` e ) ) |
| 34 |
33
|
3exp |
|- ( C e. On -> ( ( B e. ~P On /\ dom F e. C ) -> ( b e. B -> E. e e. C b = ( F ` e ) ) ) ) |
| 35 |
14 34
|
sylan9r |
|- ( ( C e. On /\ A. a e. A ( B e. ~P On /\ dom F e. C ) ) -> ( a e. A -> ( b e. B -> E. e e. C b = ( F ` e ) ) ) ) |
| 36 |
13 35
|
reximdai |
|- ( ( C e. On /\ A. a e. A ( B e. ~P On /\ dom F e. C ) ) -> ( E. a e. A b e. B -> E. a e. A E. e e. C b = ( F ` e ) ) ) |
| 37 |
36
|
3adant1 |
|- ( ( A e. V /\ C e. On /\ A. a e. A ( B e. ~P On /\ dom F e. C ) ) -> ( E. a e. A b e. B -> E. a e. A E. e e. C b = ( F ` e ) ) ) |
| 38 |
|
nfv |
|- F/ d E. e e. C b = ( F ` e ) |
| 39 |
|
nfcv |
|- F/_ a C |
| 40 |
|
nfcv |
|- F/_ a _E |
| 41 |
|
nfcsb1v |
|- F/_ a [_ d / a ]_ B |
| 42 |
40 41
|
nfoi |
|- F/_ a OrdIso ( _E , [_ d / a ]_ B ) |
| 43 |
|
nfcv |
|- F/_ a e |
| 44 |
42 43
|
nffv |
|- F/_ a ( OrdIso ( _E , [_ d / a ]_ B ) ` e ) |
| 45 |
44
|
nfeq2 |
|- F/ a b = ( OrdIso ( _E , [_ d / a ]_ B ) ` e ) |
| 46 |
39 45
|
nfrexw |
|- F/ a E. e e. C b = ( OrdIso ( _E , [_ d / a ]_ B ) ` e ) |
| 47 |
|
csbeq1a |
|- ( a = d -> B = [_ d / a ]_ B ) |
| 48 |
|
oieq2 |
|- ( B = [_ d / a ]_ B -> OrdIso ( _E , B ) = OrdIso ( _E , [_ d / a ]_ B ) ) |
| 49 |
47 48
|
syl |
|- ( a = d -> OrdIso ( _E , B ) = OrdIso ( _E , [_ d / a ]_ B ) ) |
| 50 |
1 49
|
eqtrid |
|- ( a = d -> F = OrdIso ( _E , [_ d / a ]_ B ) ) |
| 51 |
50
|
fveq1d |
|- ( a = d -> ( F ` e ) = ( OrdIso ( _E , [_ d / a ]_ B ) ` e ) ) |
| 52 |
51
|
eqeq2d |
|- ( a = d -> ( b = ( F ` e ) <-> b = ( OrdIso ( _E , [_ d / a ]_ B ) ` e ) ) ) |
| 53 |
52
|
rexbidv |
|- ( a = d -> ( E. e e. C b = ( F ` e ) <-> E. e e. C b = ( OrdIso ( _E , [_ d / a ]_ B ) ` e ) ) ) |
| 54 |
38 46 53
|
cbvrexw |
|- ( E. a e. A E. e e. C b = ( F ` e ) <-> E. d e. A E. e e. C b = ( OrdIso ( _E , [_ d / a ]_ B ) ` e ) ) |
| 55 |
37 54
|
imbitrdi |
|- ( ( A e. V /\ C e. On /\ A. a e. A ( B e. ~P On /\ dom F e. C ) ) -> ( E. a e. A b e. B -> E. d e. A E. e e. C b = ( OrdIso ( _E , [_ d / a ]_ B ) ` e ) ) ) |
| 56 |
|
eliun |
|- ( b e. U_ a e. A B <-> E. a e. A b e. B ) |
| 57 |
|
vex |
|- d e. _V |
| 58 |
|
vex |
|- e e. _V |
| 59 |
57 58
|
op1std |
|- ( c = <. d , e >. -> ( 1st ` c ) = d ) |
| 60 |
59
|
csbeq1d |
|- ( c = <. d , e >. -> [_ ( 1st ` c ) / a ]_ B = [_ d / a ]_ B ) |
| 61 |
|
oieq2 |
|- ( [_ ( 1st ` c ) / a ]_ B = [_ d / a ]_ B -> OrdIso ( _E , [_ ( 1st ` c ) / a ]_ B ) = OrdIso ( _E , [_ d / a ]_ B ) ) |
| 62 |
60 61
|
syl |
|- ( c = <. d , e >. -> OrdIso ( _E , [_ ( 1st ` c ) / a ]_ B ) = OrdIso ( _E , [_ d / a ]_ B ) ) |
| 63 |
57 58
|
op2ndd |
|- ( c = <. d , e >. -> ( 2nd ` c ) = e ) |
| 64 |
62 63
|
fveq12d |
|- ( c = <. d , e >. -> ( OrdIso ( _E , [_ ( 1st ` c ) / a ]_ B ) ` ( 2nd ` c ) ) = ( OrdIso ( _E , [_ d / a ]_ B ) ` e ) ) |
| 65 |
64
|
eqeq2d |
|- ( c = <. d , e >. -> ( b = ( OrdIso ( _E , [_ ( 1st ` c ) / a ]_ B ) ` ( 2nd ` c ) ) <-> b = ( OrdIso ( _E , [_ d / a ]_ B ) ` e ) ) ) |
| 66 |
65
|
rexxp |
|- ( E. c e. ( A X. C ) b = ( OrdIso ( _E , [_ ( 1st ` c ) / a ]_ B ) ` ( 2nd ` c ) ) <-> E. d e. A E. e e. C b = ( OrdIso ( _E , [_ d / a ]_ B ) ` e ) ) |
| 67 |
55 56 66
|
3imtr4g |
|- ( ( A e. V /\ C e. On /\ A. a e. A ( B e. ~P On /\ dom F e. C ) ) -> ( b e. U_ a e. A B -> E. c e. ( A X. C ) b = ( OrdIso ( _E , [_ ( 1st ` c ) / a ]_ B ) ` ( 2nd ` c ) ) ) ) |
| 68 |
67
|
imp |
|- ( ( ( A e. V /\ C e. On /\ A. a e. A ( B e. ~P On /\ dom F e. C ) ) /\ b e. U_ a e. A B ) -> E. c e. ( A X. C ) b = ( OrdIso ( _E , [_ ( 1st ` c ) / a ]_ B ) ` ( 2nd ` c ) ) ) |
| 69 |
10 68
|
wdomd |
|- ( ( A e. V /\ C e. On /\ A. a e. A ( B e. ~P On /\ dom F e. C ) ) -> U_ a e. A B ~<_* ( A X. C ) ) |
| 70 |
2
|
hsmexlem1 |
|- ( ( U_ a e. A B C_ On /\ U_ a e. A B ~<_* ( A X. C ) ) -> dom G e. ( har ` ~P ( A X. C ) ) ) |
| 71 |
8 69 70
|
syl2anc |
|- ( ( A e. V /\ C e. On /\ A. a e. A ( B e. ~P On /\ dom F e. C ) ) -> dom G e. ( har ` ~P ( A X. C ) ) ) |