Metamath Proof Explorer


Theorem xpwdomg

Description: Weak dominance of a Cartesian product. (Contributed by Stefan O'Rear, 13-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion xpwdomg A * B C * D A × C * B × D

Proof

Step Hyp Ref Expression
1 brwdom3i A * B f a A b B a = f b
2 1 adantr A * B C * D f a A b B a = f b
3 brwdom3i C * D g c C d D c = g d
4 3 adantl A * B C * D g c C d D c = g d
5 relwdom Rel *
6 5 brrelex1i A * B A V
7 5 brrelex1i C * D C V
8 xpexg A V C V A × C V
9 6 7 8 syl2an A * B C * D A × C V
10 9 adantr A * B C * D a A b B a = f b c C d D c = g d A × C V
11 5 brrelex2i A * B B V
12 5 brrelex2i C * D D V
13 xpexg B V D V B × D V
14 11 12 13 syl2an A * B C * D B × D V
15 14 adantr A * B C * D a A b B a = f b c C d D c = g d B × D V
16 pm3.2 b B a = f b d D c = g d b B a = f b d D c = g d
17 16 ralimdv b B a = f b c C d D c = g d c C b B a = f b d D c = g d
18 17 com12 c C d D c = g d b B a = f b c C b B a = f b d D c = g d
19 18 ralimdv c C d D c = g d a A b B a = f b a A c C b B a = f b d D c = g d
20 19 impcom a A b B a = f b c C d D c = g d a A c C b B a = f b d D c = g d
21 pm3.2 a = f b c = g d a = f b c = g d
22 21 reximdv a = f b d D c = g d d D a = f b c = g d
23 22 com12 d D c = g d a = f b d D a = f b c = g d
24 23 reximdv d D c = g d b B a = f b b B d D a = f b c = g d
25 24 impcom b B a = f b d D c = g d b B d D a = f b c = g d
26 25 2ralimi a A c C b B a = f b d D c = g d a A c C b B d D a = f b c = g d
27 20 26 syl a A b B a = f b c C d D c = g d a A c C b B d D a = f b c = g d
28 eqeq1 x = a c x = f b g d a c = f b g d
29 vex a V
30 vex c V
31 29 30 opth a c = f b g d a = f b c = g d
32 28 31 bitrdi x = a c x = f b g d a = f b c = g d
33 32 2rexbidv x = a c b B d D x = f b g d b B d D a = f b c = g d
34 33 ralxp x A × C b B d D x = f b g d a A c C b B d D a = f b c = g d
35 27 34 sylibr a A b B a = f b c C d D c = g d x A × C b B d D x = f b g d
36 35 r19.21bi a A b B a = f b c C d D c = g d x A × C b B d D x = f b g d
37 vex b V
38 vex d V
39 37 38 op1std y = b d 1 st y = b
40 39 fveq2d y = b d f 1 st y = f b
41 37 38 op2ndd y = b d 2 nd y = d
42 41 fveq2d y = b d g 2 nd y = g d
43 40 42 opeq12d y = b d f 1 st y g 2 nd y = f b g d
44 43 eqeq2d y = b d x = f 1 st y g 2 nd y x = f b g d
45 44 rexxp y B × D x = f 1 st y g 2 nd y b B d D x = f b g d
46 36 45 sylibr a A b B a = f b c C d D c = g d x A × C y B × D x = f 1 st y g 2 nd y
47 46 adantll A * B C * D a A b B a = f b c C d D c = g d x A × C y B × D x = f 1 st y g 2 nd y
48 10 15 47 wdom2d A * B C * D a A b B a = f b c C d D c = g d A × C * B × D
49 48 expr A * B C * D a A b B a = f b c C d D c = g d A × C * B × D
50 49 exlimdv A * B C * D a A b B a = f b g c C d D c = g d A × C * B × D
51 50 ex A * B C * D a A b B a = f b g c C d D c = g d A × C * B × D
52 51 exlimdv A * B C * D f a A b B a = f b g c C d D c = g d A × C * B × D
53 2 4 52 mp2d A * B C * D A × C * B × D