Metamath Proof Explorer


Theorem wdomima2g

Description: A set is weakly dominant over its image under any function. This version of wdomimag is stated so as to avoid ax-rep . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion wdomima2g FunFAVFAWFA*A

Proof

Step Hyp Ref Expression
1 df-ima FA=ranFA
2 funres FunFFunFA
3 funforn FunFAFA:domFAontoranFA
4 2 3 sylib FunFFA:domFAontoranFA
5 4 3ad2ant1 FunFAVFAWFA:domFAontoranFA
6 fof FA:domFAontoranFAFA:domFAranFA
7 5 6 syl FunFAVFAWFA:domFAranFA
8 dmres domFA=AdomF
9 inss1 AdomFA
10 8 9 eqsstri domFAA
11 simp2 FunFAVFAWAV
12 ssexg domFAAAVdomFAV
13 10 11 12 sylancr FunFAVFAWdomFAV
14 simp3 FunFAVFAWFAW
15 1 14 eqeltrrid FunFAVFAWranFAW
16 fex2 FA:domFAranFAdomFAVranFAWFAV
17 7 13 15 16 syl3anc FunFAVFAWFAV
18 fowdom FAVFA:domFAontoranFAranFA*domFA
19 17 5 18 syl2anc FunFAVFAWranFA*domFA
20 ssdomg AVdomFAAdomFAA
21 10 20 mpi AVdomFAA
22 domwdom domFAAdomFA*A
23 21 22 syl AVdomFA*A
24 23 3ad2ant2 FunFAVFAWdomFA*A
25 wdomtr ranFA*domFAdomFA*AranFA*A
26 19 24 25 syl2anc FunFAVFAWranFA*A
27 1 26 eqbrtrid FunFAVFAWFA*A