Metamath Proof Explorer


Theorem hvadd12

Description: Commutative/associative law. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion hvadd12 ABCA+B+C=B+A+C

Proof

Step Hyp Ref Expression
1 ax-hvcom ABA+B=B+A
2 1 oveq1d ABA+B+C=B+A+C
3 2 3adant3 ABCA+B+C=B+A+C
4 ax-hvass ABCA+B+C=A+B+C
5 ax-hvass BACB+A+C=B+A+C
6 5 3com12 ABCB+A+C=B+A+C
7 3 4 6 3eqtr3d ABCA+B+C=B+A+C