Metamath Proof Explorer


Theorem hvmaplkr

Description: Kernel of the vector to functional map. TODO: make this become lcfrlem11 . (Contributed by NM, 29-Mar-2015)

Ref Expression
Hypotheses hvmaplkr.h H = LHyp K
hvmaplkr.o O = ocH K W
hvmaplkr.u U = DVecH K W
hvmaplkr.v V = Base U
hvmaplkr.z 0 ˙ = 0 U
hvmaplkr.l L = LKer U
hvmaplkr.m M = HVMap K W
hvmaplkr.k φ K HL W H
hvmaplkr.x φ X V 0 ˙
Assertion hvmaplkr φ L M X = O X

Proof

Step Hyp Ref Expression
1 hvmaplkr.h H = LHyp K
2 hvmaplkr.o O = ocH K W
3 hvmaplkr.u U = DVecH K W
4 hvmaplkr.v V = Base U
5 hvmaplkr.z 0 ˙ = 0 U
6 hvmaplkr.l L = LKer U
7 hvmaplkr.m M = HVMap K W
8 hvmaplkr.k φ K HL W H
9 hvmaplkr.x φ X V 0 ˙
10 eqid + U = + U
11 eqid U = U
12 eqid Scalar U = Scalar U
13 eqid Base Scalar U = Base Scalar U
14 1 3 2 4 10 11 5 12 13 7 8 hvmapfval φ M = x V 0 ˙ v V ι j Base Scalar U | t O x v = t + U j U x
15 14 fveq1d φ M X = x V 0 ˙ v V ι j Base Scalar U | t O x v = t + U j U x X
16 15 fveq2d φ L M X = L x V 0 ˙ v V ι j Base Scalar U | t O x v = t + U j U x X
17 eqid LFnl U = LFnl U
18 eqid LDual U = LDual U
19 eqid 0 LDual U = 0 LDual U
20 eqid f LFnl U | O O L f = L f = f LFnl U | O O L f = L f
21 eqid x V 0 ˙ v V ι j Base Scalar U | t O x v = t + U j U x = x V 0 ˙ v V ι j Base Scalar U | t O x v = t + U j U x
22 1 2 3 4 10 11 12 13 5 17 6 18 19 20 21 8 9 lcfrlem11 φ L x V 0 ˙ v V ι j Base Scalar U | t O x v = t + U j U x X = O X
23 16 22 eqtrd φ L M X = O X