Metamath Proof Explorer


Theorem hvpncan

Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion hvpncan ABA+B-B=A

Proof

Step Hyp Ref Expression
1 hvaddcl ABA+B
2 hvsubval A+BBA+B-B=A+B+-1B
3 1 2 sylancom ABA+B-B=A+B+-1B
4 neg1cn 1
5 hvmulcl 1B-1B
6 4 5 mpan B-1B
7 6 ancli BB-1B
8 ax-hvass AB-1BA+B+-1B=A+B+-1B
9 8 3expb AB-1BA+B+-1B=A+B+-1B
10 7 9 sylan2 ABA+B+-1B=A+B+-1B
11 hvnegid BB+-1B=0
12 11 oveq2d BA+B+-1B=A+0
13 ax-hvaddid AA+0=A
14 12 13 sylan9eqr ABA+B+-1B=A
15 3 10 14 3eqtrd ABA+B-B=A