Metamath Proof Explorer


Theorem hvsubcan

Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvsubcan ABCA-B=A-CB=C

Proof

Step Hyp Ref Expression
1 hvsubval ABA-B=A+-1B
2 1 3adant3 ABCA-B=A+-1B
3 hvsubval ACA-C=A+-1C
4 3 3adant2 ABCA-C=A+-1C
5 2 4 eqeq12d ABCA-B=A-CA+-1B=A+-1C
6 neg1cn 1
7 hvmulcl 1B-1B
8 6 7 mpan B-1B
9 hvmulcl 1C-1C
10 6 9 mpan C-1C
11 hvaddcan A-1B-1CA+-1B=A+-1C-1B=-1C
12 10 11 syl3an3 A-1BCA+-1B=A+-1C-1B=-1C
13 8 12 syl3an2 ABCA+-1B=A+-1C-1B=-1C
14 neg1ne0 10
15 6 14 pm3.2i 110
16 hvmulcan 110BC-1B=-1CB=C
17 15 16 mp3an1 BC-1B=-1CB=C
18 17 3adant1 ABC-1B=-1CB=C
19 5 13 18 3bitrd ABCA-B=A-CB=C