Metamath Proof Explorer


Theorem hvsubcan2

Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvsubcan2 A B C A - C = B - C A = B

Proof

Step Hyp Ref Expression
1 hvsubcl C A C - A
2 1 3adant3 C A B C - A
3 hvsubcl C B C - B
4 3 3adant2 C A B C - B
5 neg1cn 1
6 neg1ne0 1 0
7 5 6 pm3.2i 1 1 0
8 hvmulcan 1 1 0 C - A C - B -1 C - A = -1 C - B C - A = C - B
9 7 8 mp3an1 C - A C - B -1 C - A = -1 C - B C - A = C - B
10 2 4 9 syl2anc C A B -1 C - A = -1 C - B C - A = C - B
11 hvnegdi C A -1 C - A = A - C
12 11 3adant3 C A B -1 C - A = A - C
13 hvnegdi C B -1 C - B = B - C
14 13 3adant2 C A B -1 C - B = B - C
15 12 14 eqeq12d C A B -1 C - A = -1 C - B A - C = B - C
16 hvsubcan C A B C - A = C - B A = B
17 10 15 16 3bitr3d C A B A - C = B - C A = B
18 17 3coml A B C A - C = B - C A = B