Metamath Proof Explorer


Theorem hvsubcan2

Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)

Ref Expression
Assertion hvsubcan2 ABCA-C=B-CA=B

Proof

Step Hyp Ref Expression
1 hvsubcl CAC-A
2 1 3adant3 CABC-A
3 hvsubcl CBC-B
4 3 3adant2 CABC-B
5 neg1cn 1
6 neg1ne0 10
7 5 6 pm3.2i 110
8 hvmulcan 110C-AC-B-1C-A=-1C-BC-A=C-B
9 7 8 mp3an1 C-AC-B-1C-A=-1C-BC-A=C-B
10 2 4 9 syl2anc CAB-1C-A=-1C-BC-A=C-B
11 hvnegdi CA-1C-A=A-C
12 11 3adant3 CAB-1C-A=A-C
13 hvnegdi CB-1C-B=B-C
14 13 3adant2 CAB-1C-B=B-C
15 12 14 eqeq12d CAB-1C-A=-1C-BA-C=B-C
16 hvsubcan CABC-A=C-BA=B
17 10 15 16 3bitr3d CABA-C=B-CA=B
18 17 3coml ABCA-C=B-CA=B