Metamath Proof Explorer


Theorem iccin

Description: Intersection of two closed intervals of extended reals. (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Assertion iccin A*B*C*D*ABCD=ifACCAifBDBD

Proof

Step Hyp Ref Expression
1 df-icc .=x*,y*z*|xzzy
2 xrmaxle A*C*z*ifACCAzAzCz
3 xrlemin z*B*D*zifBDBDzBzD
4 1 2 3 ixxin A*B*C*D*ABCD=ifACCAifBDBD