Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | iccioo01 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4nn | |
|
2 | nnrecre | |
|
3 | 1 2 | ax-mp | |
4 | halfre | |
|
5 | 2lt4 | |
|
6 | 2re | |
|
7 | 4re | |
|
8 | 2pos | |
|
9 | 4pos | |
|
10 | 6 7 8 9 | ltrecii | |
11 | 5 10 | mpbi | |
12 | iccen | |
|
13 | 3 4 11 12 | mp3an | |
14 | ovex | |
|
15 | 0xr | |
|
16 | 1xr | |
|
17 | 7 9 | recgt0ii | |
18 | halflt1 | |
|
19 | iccssioo | |
|
20 | 15 16 17 18 19 | mp4an | |
21 | ssdomg | |
|
22 | 14 20 21 | mp2 | |
23 | endomtr | |
|
24 | 13 22 23 | mp2an | |
25 | ovex | |
|
26 | ioossicc | |
|
27 | ssdomg | |
|
28 | 25 26 27 | mp2 | |
29 | sbth | |
|
30 | 24 28 29 | mp2an | |