Metamath Proof Explorer


Theorem iccioo01

Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024)

Ref Expression
Assertion iccioo01 0101

Proof

Step Hyp Ref Expression
1 4nn 4
2 nnrecre 414
3 1 2 ax-mp 14
4 halfre 12
5 2lt4 2<4
6 2re 2
7 4re 4
8 2pos 0<2
9 4pos 0<4
10 6 7 8 9 ltrecii 2<414<12
11 5 10 mpbi 14<12
12 iccen 141214<12011412
13 3 4 11 12 mp3an 011412
14 ovex 01V
15 0xr 0*
16 1xr 1*
17 7 9 recgt0ii 0<14
18 halflt1 12<1
19 iccssioo 0*1*0<1412<1141201
20 15 16 17 18 19 mp4an 141201
21 ssdomg 01V141201141201
22 14 20 21 mp2 141201
23 endomtr 0114121412010101
24 13 22 23 mp2an 0101
25 ovex 01V
26 ioossicc 0101
27 ssdomg 01V01010101
28 25 26 27 mp2 0101
29 sbth 010101010101
30 24 28 29 mp2an 0101