Metamath Proof Explorer


Theorem iccioo01

Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024)

Ref Expression
Assertion iccioo01 0 1 0 1

Proof

Step Hyp Ref Expression
1 4nn 4
2 nnrecre 4 1 4
3 1 2 ax-mp 1 4
4 halfre 1 2
5 2lt4 2 < 4
6 2re 2
7 4re 4
8 2pos 0 < 2
9 4pos 0 < 4
10 6 7 8 9 ltrecii 2 < 4 1 4 < 1 2
11 5 10 mpbi 1 4 < 1 2
12 iccen 1 4 1 2 1 4 < 1 2 0 1 1 4 1 2
13 3 4 11 12 mp3an 0 1 1 4 1 2
14 ovex 0 1 V
15 0xr 0 *
16 1xr 1 *
17 7 9 recgt0ii 0 < 1 4
18 halflt1 1 2 < 1
19 iccssioo 0 * 1 * 0 < 1 4 1 2 < 1 1 4 1 2 0 1
20 15 16 17 18 19 mp4an 1 4 1 2 0 1
21 ssdomg 0 1 V 1 4 1 2 0 1 1 4 1 2 0 1
22 14 20 21 mp2 1 4 1 2 0 1
23 endomtr 0 1 1 4 1 2 1 4 1 2 0 1 0 1 0 1
24 13 22 23 mp2an 0 1 0 1
25 ovex 0 1 V
26 ioossicc 0 1 0 1
27 ssdomg 0 1 V 0 1 0 1 0 1 0 1
28 25 26 27 mp2 0 1 0 1
29 sbth 0 1 0 1 0 1 0 1 0 1 0 1
30 24 28 29 mp2an 0 1 0 1