Metamath Proof Explorer


Theorem iccioo01

Description: The closed unit interval is equinumerous to the open unit interval. Based on a Mastodon post by Michael Kinyon. (Contributed by Jim Kingdon, 4-Jun-2024)

Ref Expression
Assertion iccioo01 ( 0 [,] 1 ) ≈ ( 0 (,) 1 )

Proof

Step Hyp Ref Expression
1 4nn 4 ∈ ℕ
2 nnrecre ( 4 ∈ ℕ → ( 1 / 4 ) ∈ ℝ )
3 1 2 ax-mp ( 1 / 4 ) ∈ ℝ
4 halfre ( 1 / 2 ) ∈ ℝ
5 2lt4 2 < 4
6 2re 2 ∈ ℝ
7 4re 4 ∈ ℝ
8 2pos 0 < 2
9 4pos 0 < 4
10 6 7 8 9 ltrecii ( 2 < 4 ↔ ( 1 / 4 ) < ( 1 / 2 ) )
11 5 10 mpbi ( 1 / 4 ) < ( 1 / 2 )
12 iccen ( ( ( 1 / 4 ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ∧ ( 1 / 4 ) < ( 1 / 2 ) ) → ( 0 [,] 1 ) ≈ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) )
13 3 4 11 12 mp3an ( 0 [,] 1 ) ≈ ( ( 1 / 4 ) [,] ( 1 / 2 ) )
14 ovex ( 0 (,) 1 ) ∈ V
15 0xr 0 ∈ ℝ*
16 1xr 1 ∈ ℝ*
17 7 9 recgt0ii 0 < ( 1 / 4 )
18 halflt1 ( 1 / 2 ) < 1
19 iccssioo ( ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) ∧ ( 0 < ( 1 / 4 ) ∧ ( 1 / 2 ) < 1 ) ) → ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ⊆ ( 0 (,) 1 ) )
20 15 16 17 18 19 mp4an ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ⊆ ( 0 (,) 1 )
21 ssdomg ( ( 0 (,) 1 ) ∈ V → ( ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ⊆ ( 0 (,) 1 ) → ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ≼ ( 0 (,) 1 ) ) )
22 14 20 21 mp2 ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ≼ ( 0 (,) 1 )
23 endomtr ( ( ( 0 [,] 1 ) ≈ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ∧ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ≼ ( 0 (,) 1 ) ) → ( 0 [,] 1 ) ≼ ( 0 (,) 1 ) )
24 13 22 23 mp2an ( 0 [,] 1 ) ≼ ( 0 (,) 1 )
25 ovex ( 0 [,] 1 ) ∈ V
26 ioossicc ( 0 (,) 1 ) ⊆ ( 0 [,] 1 )
27 ssdomg ( ( 0 [,] 1 ) ∈ V → ( ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) → ( 0 (,) 1 ) ≼ ( 0 [,] 1 ) ) )
28 25 26 27 mp2 ( 0 (,) 1 ) ≼ ( 0 [,] 1 )
29 sbth ( ( ( 0 [,] 1 ) ≼ ( 0 (,) 1 ) ∧ ( 0 (,) 1 ) ≼ ( 0 [,] 1 ) ) → ( 0 [,] 1 ) ≈ ( 0 (,) 1 ) )
30 24 28 29 mp2an ( 0 [,] 1 ) ≈ ( 0 (,) 1 )