Step |
Hyp |
Ref |
Expression |
1 |
|
4nn |
⊢ 4 ∈ ℕ |
2 |
|
nnrecre |
⊢ ( 4 ∈ ℕ → ( 1 / 4 ) ∈ ℝ ) |
3 |
1 2
|
ax-mp |
⊢ ( 1 / 4 ) ∈ ℝ |
4 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
5 |
|
2lt4 |
⊢ 2 < 4 |
6 |
|
2re |
⊢ 2 ∈ ℝ |
7 |
|
4re |
⊢ 4 ∈ ℝ |
8 |
|
2pos |
⊢ 0 < 2 |
9 |
|
4pos |
⊢ 0 < 4 |
10 |
6 7 8 9
|
ltrecii |
⊢ ( 2 < 4 ↔ ( 1 / 4 ) < ( 1 / 2 ) ) |
11 |
5 10
|
mpbi |
⊢ ( 1 / 4 ) < ( 1 / 2 ) |
12 |
|
iccen |
⊢ ( ( ( 1 / 4 ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ∧ ( 1 / 4 ) < ( 1 / 2 ) ) → ( 0 [,] 1 ) ≈ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ) |
13 |
3 4 11 12
|
mp3an |
⊢ ( 0 [,] 1 ) ≈ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) |
14 |
|
ovex |
⊢ ( 0 (,) 1 ) ∈ V |
15 |
|
0xr |
⊢ 0 ∈ ℝ* |
16 |
|
1xr |
⊢ 1 ∈ ℝ* |
17 |
7 9
|
recgt0ii |
⊢ 0 < ( 1 / 4 ) |
18 |
|
halflt1 |
⊢ ( 1 / 2 ) < 1 |
19 |
|
iccssioo |
⊢ ( ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) ∧ ( 0 < ( 1 / 4 ) ∧ ( 1 / 2 ) < 1 ) ) → ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ⊆ ( 0 (,) 1 ) ) |
20 |
15 16 17 18 19
|
mp4an |
⊢ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ⊆ ( 0 (,) 1 ) |
21 |
|
ssdomg |
⊢ ( ( 0 (,) 1 ) ∈ V → ( ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ⊆ ( 0 (,) 1 ) → ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ≼ ( 0 (,) 1 ) ) ) |
22 |
14 20 21
|
mp2 |
⊢ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ≼ ( 0 (,) 1 ) |
23 |
|
endomtr |
⊢ ( ( ( 0 [,] 1 ) ≈ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ∧ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ≼ ( 0 (,) 1 ) ) → ( 0 [,] 1 ) ≼ ( 0 (,) 1 ) ) |
24 |
13 22 23
|
mp2an |
⊢ ( 0 [,] 1 ) ≼ ( 0 (,) 1 ) |
25 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
26 |
|
ioossicc |
⊢ ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) |
27 |
|
ssdomg |
⊢ ( ( 0 [,] 1 ) ∈ V → ( ( 0 (,) 1 ) ⊆ ( 0 [,] 1 ) → ( 0 (,) 1 ) ≼ ( 0 [,] 1 ) ) ) |
28 |
25 26 27
|
mp2 |
⊢ ( 0 (,) 1 ) ≼ ( 0 [,] 1 ) |
29 |
|
sbth |
⊢ ( ( ( 0 [,] 1 ) ≼ ( 0 (,) 1 ) ∧ ( 0 (,) 1 ) ≼ ( 0 [,] 1 ) ) → ( 0 [,] 1 ) ≈ ( 0 (,) 1 ) ) |
30 |
24 28 29
|
mp2an |
⊢ ( 0 [,] 1 ) ≈ ( 0 (,) 1 ) |