Step |
Hyp |
Ref |
Expression |
1 |
|
4nn |
|- 4 e. NN |
2 |
|
nnrecre |
|- ( 4 e. NN -> ( 1 / 4 ) e. RR ) |
3 |
1 2
|
ax-mp |
|- ( 1 / 4 ) e. RR |
4 |
|
halfre |
|- ( 1 / 2 ) e. RR |
5 |
|
2lt4 |
|- 2 < 4 |
6 |
|
2re |
|- 2 e. RR |
7 |
|
4re |
|- 4 e. RR |
8 |
|
2pos |
|- 0 < 2 |
9 |
|
4pos |
|- 0 < 4 |
10 |
6 7 8 9
|
ltrecii |
|- ( 2 < 4 <-> ( 1 / 4 ) < ( 1 / 2 ) ) |
11 |
5 10
|
mpbi |
|- ( 1 / 4 ) < ( 1 / 2 ) |
12 |
|
iccen |
|- ( ( ( 1 / 4 ) e. RR /\ ( 1 / 2 ) e. RR /\ ( 1 / 4 ) < ( 1 / 2 ) ) -> ( 0 [,] 1 ) ~~ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ) |
13 |
3 4 11 12
|
mp3an |
|- ( 0 [,] 1 ) ~~ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) |
14 |
|
ovex |
|- ( 0 (,) 1 ) e. _V |
15 |
|
0xr |
|- 0 e. RR* |
16 |
|
1xr |
|- 1 e. RR* |
17 |
7 9
|
recgt0ii |
|- 0 < ( 1 / 4 ) |
18 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
19 |
|
iccssioo |
|- ( ( ( 0 e. RR* /\ 1 e. RR* ) /\ ( 0 < ( 1 / 4 ) /\ ( 1 / 2 ) < 1 ) ) -> ( ( 1 / 4 ) [,] ( 1 / 2 ) ) C_ ( 0 (,) 1 ) ) |
20 |
15 16 17 18 19
|
mp4an |
|- ( ( 1 / 4 ) [,] ( 1 / 2 ) ) C_ ( 0 (,) 1 ) |
21 |
|
ssdomg |
|- ( ( 0 (,) 1 ) e. _V -> ( ( ( 1 / 4 ) [,] ( 1 / 2 ) ) C_ ( 0 (,) 1 ) -> ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ~<_ ( 0 (,) 1 ) ) ) |
22 |
14 20 21
|
mp2 |
|- ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ~<_ ( 0 (,) 1 ) |
23 |
|
endomtr |
|- ( ( ( 0 [,] 1 ) ~~ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) /\ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ~<_ ( 0 (,) 1 ) ) -> ( 0 [,] 1 ) ~<_ ( 0 (,) 1 ) ) |
24 |
13 22 23
|
mp2an |
|- ( 0 [,] 1 ) ~<_ ( 0 (,) 1 ) |
25 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
26 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
27 |
|
ssdomg |
|- ( ( 0 [,] 1 ) e. _V -> ( ( 0 (,) 1 ) C_ ( 0 [,] 1 ) -> ( 0 (,) 1 ) ~<_ ( 0 [,] 1 ) ) ) |
28 |
25 26 27
|
mp2 |
|- ( 0 (,) 1 ) ~<_ ( 0 [,] 1 ) |
29 |
|
sbth |
|- ( ( ( 0 [,] 1 ) ~<_ ( 0 (,) 1 ) /\ ( 0 (,) 1 ) ~<_ ( 0 [,] 1 ) ) -> ( 0 [,] 1 ) ~~ ( 0 (,) 1 ) ) |
30 |
24 28 29
|
mp2an |
|- ( 0 [,] 1 ) ~~ ( 0 (,) 1 ) |