| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4nn |
|- 4 e. NN |
| 2 |
|
nnrecre |
|- ( 4 e. NN -> ( 1 / 4 ) e. RR ) |
| 3 |
1 2
|
ax-mp |
|- ( 1 / 4 ) e. RR |
| 4 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 5 |
|
2lt4 |
|- 2 < 4 |
| 6 |
|
2re |
|- 2 e. RR |
| 7 |
|
4re |
|- 4 e. RR |
| 8 |
|
2pos |
|- 0 < 2 |
| 9 |
|
4pos |
|- 0 < 4 |
| 10 |
6 7 8 9
|
ltrecii |
|- ( 2 < 4 <-> ( 1 / 4 ) < ( 1 / 2 ) ) |
| 11 |
5 10
|
mpbi |
|- ( 1 / 4 ) < ( 1 / 2 ) |
| 12 |
|
iccen |
|- ( ( ( 1 / 4 ) e. RR /\ ( 1 / 2 ) e. RR /\ ( 1 / 4 ) < ( 1 / 2 ) ) -> ( 0 [,] 1 ) ~~ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ) |
| 13 |
3 4 11 12
|
mp3an |
|- ( 0 [,] 1 ) ~~ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) |
| 14 |
|
ovex |
|- ( 0 (,) 1 ) e. _V |
| 15 |
|
0xr |
|- 0 e. RR* |
| 16 |
|
1xr |
|- 1 e. RR* |
| 17 |
7 9
|
recgt0ii |
|- 0 < ( 1 / 4 ) |
| 18 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 19 |
|
iccssioo |
|- ( ( ( 0 e. RR* /\ 1 e. RR* ) /\ ( 0 < ( 1 / 4 ) /\ ( 1 / 2 ) < 1 ) ) -> ( ( 1 / 4 ) [,] ( 1 / 2 ) ) C_ ( 0 (,) 1 ) ) |
| 20 |
15 16 17 18 19
|
mp4an |
|- ( ( 1 / 4 ) [,] ( 1 / 2 ) ) C_ ( 0 (,) 1 ) |
| 21 |
|
ssdomg |
|- ( ( 0 (,) 1 ) e. _V -> ( ( ( 1 / 4 ) [,] ( 1 / 2 ) ) C_ ( 0 (,) 1 ) -> ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ~<_ ( 0 (,) 1 ) ) ) |
| 22 |
14 20 21
|
mp2 |
|- ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ~<_ ( 0 (,) 1 ) |
| 23 |
|
endomtr |
|- ( ( ( 0 [,] 1 ) ~~ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) /\ ( ( 1 / 4 ) [,] ( 1 / 2 ) ) ~<_ ( 0 (,) 1 ) ) -> ( 0 [,] 1 ) ~<_ ( 0 (,) 1 ) ) |
| 24 |
13 22 23
|
mp2an |
|- ( 0 [,] 1 ) ~<_ ( 0 (,) 1 ) |
| 25 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
| 26 |
|
ioossicc |
|- ( 0 (,) 1 ) C_ ( 0 [,] 1 ) |
| 27 |
|
ssdomg |
|- ( ( 0 [,] 1 ) e. _V -> ( ( 0 (,) 1 ) C_ ( 0 [,] 1 ) -> ( 0 (,) 1 ) ~<_ ( 0 [,] 1 ) ) ) |
| 28 |
25 26 27
|
mp2 |
|- ( 0 (,) 1 ) ~<_ ( 0 [,] 1 ) |
| 29 |
|
sbth |
|- ( ( ( 0 [,] 1 ) ~<_ ( 0 (,) 1 ) /\ ( 0 (,) 1 ) ~<_ ( 0 [,] 1 ) ) -> ( 0 [,] 1 ) ~~ ( 0 (,) 1 ) ) |
| 30 |
24 28 29
|
mp2an |
|- ( 0 [,] 1 ) ~~ ( 0 (,) 1 ) |