Metamath Proof Explorer


Theorem ichexmpl1

Description: Example for interchangeable setvar variables in a statement of predicate calculus with equality. (Contributed by AV, 31-Jul-2023)

Ref Expression
Assertion ichexmpl1 a b a b c a = b a c b c

Proof

Step Hyp Ref Expression
1 equequ1 a = t a = b t = b
2 neeq1 a = t a c t c
3 1 2 3anbi12d a = t a = b a c b c t = b t c b c
4 3 2exbidv a = t b c a = b a c b c b c t = b t c b c
5 4 cbvexvw a b c a = b a c b c t b c t = b t c b c
6 5 a1i a = t a b c a = b a c b c t b c t = b t c b c
7 equequ2 b = a t = b t = a
8 neeq1 b = a b c a c
9 7 8 3anbi13d b = a t = b t c b c t = a t c a c
10 9 exbidv b = a c t = b t c b c c t = a t c a c
11 10 cbvexvw b c t = b t c b c a c t = a t c a c
12 11 exbii t b c t = b t c b c t a c t = a t c a c
13 12 a1i b = a t b c t = b t c b c t a c t = a t c a c
14 equequ1 t = b t = a b = a
15 neeq1 t = b t c b c
16 14 15 3anbi12d t = b t = a t c a c b = a b c a c
17 16 2exbidv t = b a c t = a t c a c a c b = a b c a c
18 17 cbvexvw t a c t = a t c a c b a c b = a b c a c
19 excom b a c b = a b c a c a b c b = a b c a c
20 3ancomb b = a b c a c b = a a c b c
21 equcom b = a a = b
22 21 3anbi1i b = a a c b c a = b a c b c
23 20 22 bitri b = a b c a c a = b a c b c
24 23 3exbii a b c b = a b c a c a b c a = b a c b c
25 19 24 bitri b a c b = a b c a c a b c a = b a c b c
26 18 25 bitri t a c t = a t c a c a b c a = b a c b c
27 26 a1i t = b t a c t = a t c a c a b c a = b a c b c
28 6 13 27 ichcircshi a b a b c a = b a c b c