Metamath Proof Explorer


Theorem ichexmpl2

Description: Example for interchangeable setvar variables in an arithmetic expression. (Contributed by AV, 31-Jul-2023)

Ref Expression
Assertion ichexmpl2 a b a b c a 2 + b 2 = c 2

Proof

Step Hyp Ref Expression
1 eleq1w a = t a t
2 1 3anbi1d a = t a b c t b c
3 oveq1 a = t a 2 = t 2
4 3 oveq1d a = t a 2 + b 2 = t 2 + b 2
5 4 eqeq1d a = t a 2 + b 2 = c 2 t 2 + b 2 = c 2
6 2 5 imbi12d a = t a b c a 2 + b 2 = c 2 t b c t 2 + b 2 = c 2
7 eleq1w b = a b a
8 7 3anbi2d b = a t b c t a c
9 oveq1 b = a b 2 = a 2
10 9 oveq2d b = a t 2 + b 2 = t 2 + a 2
11 10 eqeq1d b = a t 2 + b 2 = c 2 t 2 + a 2 = c 2
12 8 11 imbi12d b = a t b c t 2 + b 2 = c 2 t a c t 2 + a 2 = c 2
13 eleq1w t = b t b
14 13 3anbi1d t = b t a c b a c
15 oveq1 t = b t 2 = b 2
16 15 oveq1d t = b t 2 + a 2 = b 2 + a 2
17 16 eqeq1d t = b t 2 + a 2 = c 2 b 2 + a 2 = c 2
18 14 17 imbi12d t = b t a c t 2 + a 2 = c 2 b a c b 2 + a 2 = c 2
19 3ancoma b a c a b c
20 19 imbi1i b a c b 2 + a 2 = c 2 a b c b 2 + a 2 = c 2
21 sqcl b b 2
22 21 3ad2ant2 a b c b 2
23 sqcl a a 2
24 23 3ad2ant1 a b c a 2
25 22 24 addcomd a b c b 2 + a 2 = a 2 + b 2
26 25 eqeq1d a b c b 2 + a 2 = c 2 a 2 + b 2 = c 2
27 26 pm5.74i a b c b 2 + a 2 = c 2 a b c a 2 + b 2 = c 2
28 20 27 bitri b a c b 2 + a 2 = c 2 a b c a 2 + b 2 = c 2
29 18 28 bitrdi t = b t a c t 2 + a 2 = c 2 a b c a 2 + b 2 = c 2
30 6 12 29 ichcircshi a b a b c a 2 + b 2 = c 2