Metamath Proof Explorer


Theorem ichexmpl2

Description: Example for interchangeable setvar variables in an arithmetic expression. (Contributed by AV, 31-Jul-2023)

Ref Expression
Assertion ichexmpl2 ababca2+b2=c2

Proof

Step Hyp Ref Expression
1 eleq1w a=tat
2 1 3anbi1d a=tabctbc
3 oveq1 a=ta2=t2
4 3 oveq1d a=ta2+b2=t2+b2
5 4 eqeq1d a=ta2+b2=c2t2+b2=c2
6 2 5 imbi12d a=tabca2+b2=c2tbct2+b2=c2
7 eleq1w b=aba
8 7 3anbi2d b=atbctac
9 oveq1 b=ab2=a2
10 9 oveq2d b=at2+b2=t2+a2
11 10 eqeq1d b=at2+b2=c2t2+a2=c2
12 8 11 imbi12d b=atbct2+b2=c2tact2+a2=c2
13 eleq1w t=btb
14 13 3anbi1d t=btacbac
15 oveq1 t=bt2=b2
16 15 oveq1d t=bt2+a2=b2+a2
17 16 eqeq1d t=bt2+a2=c2b2+a2=c2
18 14 17 imbi12d t=btact2+a2=c2bacb2+a2=c2
19 3ancoma bacabc
20 19 imbi1i bacb2+a2=c2abcb2+a2=c2
21 sqcl bb2
22 21 3ad2ant2 abcb2
23 sqcl aa2
24 23 3ad2ant1 abca2
25 22 24 addcomd abcb2+a2=a2+b2
26 25 eqeq1d abcb2+a2=c2a2+b2=c2
27 26 pm5.74i abcb2+a2=c2abca2+b2=c2
28 20 27 bitri bacb2+a2=c2abca2+b2=c2
29 18 28 bitrdi t=btact2+a2=c2abca2+b2=c2
30 6 12 29 ichcircshi ababca2+b2=c2