| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1w | ⊢ ( 𝑎  =  𝑡  →  ( 𝑎  ∈  ℂ  ↔  𝑡  ∈  ℂ ) ) | 
						
							| 2 | 1 | 3anbi1d | ⊢ ( 𝑎  =  𝑡  →  ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  ↔  ( 𝑡  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ ) ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑎  =  𝑡  →  ( 𝑎 ↑ 2 )  =  ( 𝑡 ↑ 2 ) ) | 
						
							| 4 | 3 | oveq1d | ⊢ ( 𝑎  =  𝑡  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( ( 𝑡 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 5 | 4 | eqeq1d | ⊢ ( 𝑎  =  𝑡  →  ( ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑐 ↑ 2 )  ↔  ( ( 𝑡 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) ) | 
						
							| 6 | 2 5 | imbi12d | ⊢ ( 𝑎  =  𝑡  →  ( ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) )  ↔  ( ( 𝑡  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑡 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) ) ) | 
						
							| 7 |  | eleq1w | ⊢ ( 𝑏  =  𝑎  →  ( 𝑏  ∈  ℂ  ↔  𝑎  ∈  ℂ ) ) | 
						
							| 8 | 7 | 3anbi2d | ⊢ ( 𝑏  =  𝑎  →  ( ( 𝑡  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  ↔  ( 𝑡  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑐  ∈  ℂ ) ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑏  =  𝑎  →  ( 𝑏 ↑ 2 )  =  ( 𝑎 ↑ 2 ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝑏  =  𝑎  →  ( ( 𝑡 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( ( 𝑡 ↑ 2 )  +  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑏  =  𝑎  →  ( ( ( 𝑡 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑐 ↑ 2 )  ↔  ( ( 𝑡 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) ) | 
						
							| 12 | 8 11 | imbi12d | ⊢ ( 𝑏  =  𝑎  →  ( ( ( 𝑡  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑡 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) )  ↔  ( ( 𝑡  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑡 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) ) ) | 
						
							| 13 |  | eleq1w | ⊢ ( 𝑡  =  𝑏  →  ( 𝑡  ∈  ℂ  ↔  𝑏  ∈  ℂ ) ) | 
						
							| 14 | 13 | 3anbi1d | ⊢ ( 𝑡  =  𝑏  →  ( ( 𝑡  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑐  ∈  ℂ )  ↔  ( 𝑏  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑐  ∈  ℂ ) ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑡  =  𝑏  →  ( 𝑡 ↑ 2 )  =  ( 𝑏 ↑ 2 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( 𝑡  =  𝑏  →  ( ( 𝑡 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( ( 𝑏 ↑ 2 )  +  ( 𝑎 ↑ 2 ) ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( 𝑡  =  𝑏  →  ( ( ( 𝑡 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 )  ↔  ( ( 𝑏 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) ) | 
						
							| 18 | 14 17 | imbi12d | ⊢ ( 𝑡  =  𝑏  →  ( ( ( 𝑡  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑡 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) )  ↔  ( ( 𝑏  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑏 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) ) ) | 
						
							| 19 |  | 3ancoma | ⊢ ( ( 𝑏  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑐  ∈  ℂ )  ↔  ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ ) ) | 
						
							| 20 | 19 | imbi1i | ⊢ ( ( ( 𝑏  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑏 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) )  ↔  ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑏 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) ) | 
						
							| 21 |  | sqcl | ⊢ ( 𝑏  ∈  ℂ  →  ( 𝑏 ↑ 2 )  ∈  ℂ ) | 
						
							| 22 | 21 | 3ad2ant2 | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( 𝑏 ↑ 2 )  ∈  ℂ ) | 
						
							| 23 |  | sqcl | ⊢ ( 𝑎  ∈  ℂ  →  ( 𝑎 ↑ 2 )  ∈  ℂ ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( 𝑎 ↑ 2 )  ∈  ℂ ) | 
						
							| 25 | 22 24 | addcomd | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑏 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) ) ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( ( 𝑏 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 )  ↔  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) ) | 
						
							| 27 | 26 | pm5.74i | ⊢ ( ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑏 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) )  ↔  ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) ) | 
						
							| 28 | 20 27 | bitri | ⊢ ( ( ( 𝑏  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑏 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) )  ↔  ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) ) | 
						
							| 29 | 18 28 | bitrdi | ⊢ ( 𝑡  =  𝑏  →  ( ( ( 𝑡  ∈  ℂ  ∧  𝑎  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑡 ↑ 2 )  +  ( 𝑎 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) )  ↔  ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) ) ) | 
						
							| 30 | 6 12 29 | ichcircshi | ⊢ [ 𝑎 ⇄ 𝑏 ] ( ( 𝑎  ∈  ℂ  ∧  𝑏  ∈  ℂ  ∧  𝑐  ∈  ℂ )  →  ( ( 𝑎 ↑ 2 )  +  ( 𝑏 ↑ 2 ) )  =  ( 𝑐 ↑ 2 ) ) |