| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1w |  |-  ( a = t -> ( a e. CC <-> t e. CC ) ) | 
						
							| 2 | 1 | 3anbi1d |  |-  ( a = t -> ( ( a e. CC /\ b e. CC /\ c e. CC ) <-> ( t e. CC /\ b e. CC /\ c e. CC ) ) ) | 
						
							| 3 |  | oveq1 |  |-  ( a = t -> ( a ^ 2 ) = ( t ^ 2 ) ) | 
						
							| 4 | 3 | oveq1d |  |-  ( a = t -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( ( t ^ 2 ) + ( b ^ 2 ) ) ) | 
						
							| 5 | 4 | eqeq1d |  |-  ( a = t -> ( ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) <-> ( ( t ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) | 
						
							| 6 | 2 5 | imbi12d |  |-  ( a = t -> ( ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( t e. CC /\ b e. CC /\ c e. CC ) -> ( ( t ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) ) | 
						
							| 7 |  | eleq1w |  |-  ( b = a -> ( b e. CC <-> a e. CC ) ) | 
						
							| 8 | 7 | 3anbi2d |  |-  ( b = a -> ( ( t e. CC /\ b e. CC /\ c e. CC ) <-> ( t e. CC /\ a e. CC /\ c e. CC ) ) ) | 
						
							| 9 |  | oveq1 |  |-  ( b = a -> ( b ^ 2 ) = ( a ^ 2 ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( b = a -> ( ( t ^ 2 ) + ( b ^ 2 ) ) = ( ( t ^ 2 ) + ( a ^ 2 ) ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( b = a -> ( ( ( t ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) <-> ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) ) | 
						
							| 12 | 8 11 | imbi12d |  |-  ( b = a -> ( ( ( t e. CC /\ b e. CC /\ c e. CC ) -> ( ( t ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( t e. CC /\ a e. CC /\ c e. CC ) -> ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) ) ) | 
						
							| 13 |  | eleq1w |  |-  ( t = b -> ( t e. CC <-> b e. CC ) ) | 
						
							| 14 | 13 | 3anbi1d |  |-  ( t = b -> ( ( t e. CC /\ a e. CC /\ c e. CC ) <-> ( b e. CC /\ a e. CC /\ c e. CC ) ) ) | 
						
							| 15 |  | oveq1 |  |-  ( t = b -> ( t ^ 2 ) = ( b ^ 2 ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( t = b -> ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( ( b ^ 2 ) + ( a ^ 2 ) ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( t = b -> ( ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) <-> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) ) | 
						
							| 18 | 14 17 | imbi12d |  |-  ( t = b -> ( ( ( t e. CC /\ a e. CC /\ c e. CC ) -> ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( b e. CC /\ a e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) ) ) | 
						
							| 19 |  | 3ancoma |  |-  ( ( b e. CC /\ a e. CC /\ c e. CC ) <-> ( a e. CC /\ b e. CC /\ c e. CC ) ) | 
						
							| 20 | 19 | imbi1i |  |-  ( ( ( b e. CC /\ a e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) ) | 
						
							| 21 |  | sqcl |  |-  ( b e. CC -> ( b ^ 2 ) e. CC ) | 
						
							| 22 | 21 | 3ad2ant2 |  |-  ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( b ^ 2 ) e. CC ) | 
						
							| 23 |  | sqcl |  |-  ( a e. CC -> ( a ^ 2 ) e. CC ) | 
						
							| 24 | 23 | 3ad2ant1 |  |-  ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( a ^ 2 ) e. CC ) | 
						
							| 25 | 22 24 | addcomd |  |-  ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( ( a ^ 2 ) + ( b ^ 2 ) ) ) | 
						
							| 26 | 25 | eqeq1d |  |-  ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) <-> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) | 
						
							| 27 | 26 | pm5.74i |  |-  ( ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) | 
						
							| 28 | 20 27 | bitri |  |-  ( ( ( b e. CC /\ a e. CC /\ c e. CC ) -> ( ( b ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) | 
						
							| 29 | 18 28 | bitrdi |  |-  ( t = b -> ( ( ( t e. CC /\ a e. CC /\ c e. CC ) -> ( ( t ^ 2 ) + ( a ^ 2 ) ) = ( c ^ 2 ) ) <-> ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) ) ) | 
						
							| 30 | 6 12 29 | ichcircshi |  |-  [ a <> b ] ( ( a e. CC /\ b e. CC /\ c e. CC ) -> ( ( a ^ 2 ) + ( b ^ 2 ) ) = ( c ^ 2 ) ) |