Metamath Proof Explorer


Theorem ichexmpl1

Description: Example for interchangeable setvar variables in a statement of predicate calculus with equality. (Contributed by AV, 31-Jul-2023)

Ref Expression
Assertion ichexmpl1 ababca=bacbc

Proof

Step Hyp Ref Expression
1 equequ1 a=ta=bt=b
2 neeq1 a=tactc
3 1 2 3anbi12d a=ta=bacbct=btcbc
4 3 2exbidv a=tbca=bacbcbct=btcbc
5 4 cbvexvw abca=bacbctbct=btcbc
6 5 a1i a=tabca=bacbctbct=btcbc
7 equequ2 b=at=bt=a
8 neeq1 b=abcac
9 7 8 3anbi13d b=at=btcbct=atcac
10 9 exbidv b=act=btcbcct=atcac
11 10 cbvexvw bct=btcbcact=atcac
12 11 exbii tbct=btcbctact=atcac
13 12 a1i b=atbct=btcbctact=atcac
14 equequ1 t=bt=ab=a
15 neeq1 t=btcbc
16 14 15 3anbi12d t=bt=atcacb=abcac
17 16 2exbidv t=bact=atcacacb=abcac
18 17 cbvexvw tact=atcacbacb=abcac
19 excom bacb=abcacabcb=abcac
20 3ancomb b=abcacb=aacbc
21 equcom b=aa=b
22 21 3anbi1i b=aacbca=bacbc
23 20 22 bitri b=abcaca=bacbc
24 23 3exbii abcb=abcacabca=bacbc
25 19 24 bitri bacb=abcacabca=bacbc
26 18 25 bitri tact=atcacabca=bacbc
27 26 a1i t=btact=atcacabca=bacbc
28 6 13 27 ichcircshi ababca=bacbc