Metamath Proof Explorer


Theorem icopnfsup

Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion icopnfsup A * A +∞ sup A +∞ * < = +∞

Proof

Step Hyp Ref Expression
1 simpl A * A +∞ A *
2 pnfxr +∞ *
3 2 a1i A * A +∞ +∞ *
4 nltpnft A * A = +∞ ¬ A < +∞
5 4 necon2abid A * A < +∞ A +∞
6 5 biimpar A * A +∞ A < +∞
7 lbico1 A * +∞ * A < +∞ A A +∞
8 1 3 6 7 syl3anc A * A +∞ A A +∞
9 8 ne0d A * A +∞ A +∞
10 df-ico . = x * , y * z * | x z z < y
11 idd w * +∞ * w < +∞ w < +∞
12 xrltle w * +∞ * w < +∞ w +∞
13 xrltle A * w * A < w A w
14 idd A * w * A w A w
15 10 11 12 13 14 ixxub A * +∞ * A +∞ sup A +∞ * < = +∞
16 1 3 9 15 syl3anc A * A +∞ sup A +∞ * < = +∞