Metamath Proof Explorer


Theorem icopnfsup

Description: An upper set of reals is unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion icopnfsup A*A+∞supA+∞*<=+∞

Proof

Step Hyp Ref Expression
1 simpl A*A+∞A*
2 pnfxr +∞*
3 2 a1i A*A+∞+∞*
4 nltpnft A*A=+∞¬A<+∞
5 4 necon2abid A*A<+∞A+∞
6 5 biimpar A*A+∞A<+∞
7 lbico1 A*+∞*A<+∞AA+∞
8 1 3 6 7 syl3anc A*A+∞AA+∞
9 8 ne0d A*A+∞A+∞
10 df-ico .=x*,y*z*|xzz<y
11 idd w*+∞*w<+∞w<+∞
12 xrltle w*+∞*w<+∞w+∞
13 xrltle A*w*A<wAw
14 idd A*w*AwAw
15 10 11 12 13 14 ixxub A*+∞*A+∞supA+∞*<=+∞
16 1 3 9 15 syl3anc A*A+∞supA+∞*<=+∞