Metamath Proof Explorer


Theorem idcnop

Description: The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion idcnop IContOp

Proof

Step Hyp Ref Expression
1 f1oi I:1-1 onto
2 f1of I:1-1 ontoI:
3 1 2 ax-mp I:
4 id y+y+
5 fvresi wIw=w
6 fvresi xIx=x
7 5 6 oveqan12rd xwIw-Ix=w-x
8 7 fveq2d xwnormIw-Ix=normw-x
9 8 breq1d xwnormIw-Ix<ynormw-x<y
10 9 biimprd xwnormw-x<ynormIw-Ix<y
11 10 ralrimiva xwnormw-x<ynormIw-Ix<y
12 breq2 z=ynormw-x<znormw-x<y
13 12 rspceaimv y+wnormw-x<ynormIw-Ix<yz+wnormw-x<znormIw-Ix<y
14 4 11 13 syl2anr xy+z+wnormw-x<znormIw-Ix<y
15 14 rgen2 xy+z+wnormw-x<znormIw-Ix<y
16 elcnop IContOpI:xy+z+wnormw-x<znormIw-Ix<y
17 3 15 16 mpbir2an IContOp