Metamath Proof Explorer


Theorem idfu1stalem

Description: Lemma for idfu1sta . (Contributed by Zhi Wang, 10-Nov-2025)

Ref Expression
Hypotheses idfu2nda.i I = id func C
idfu2nda.d φ I D Func E
idfu2nda.b φ B = Base D
Assertion idfu1stalem φ B = Base C

Proof

Step Hyp Ref Expression
1 idfu2nda.i I = id func C
2 idfu2nda.d φ I D Func E
3 idfu2nda.b φ B = Base D
4 1 2 eqeltrrid φ id func C D Func E
5 idfurcl id func C D Func E C Cat
6 1 idfucl C Cat I C Func C
7 4 5 6 3syl φ I C Func C
8 7 func1st2nd φ 1 st I C Func C 2 nd I
9 2 func1st2nd φ 1 st I D Func E 2 nd I
10 8 9 funchomf φ Hom 𝑓 C = Hom 𝑓 D
11 10 homfeqbas φ Base C = Base D
12 3 11 eqtr4d φ B = Base C