Metamath Proof Explorer


Theorem idfudiag1bas

Description: If the identity functor of a category is the same as a constant functor to the category, then the base is a singleton. (Contributed by Zhi Wang, 19-Oct-2025)

Ref Expression
Hypotheses idfudiag1.i I = id func C
idfudiag1.l L = C Δ func C
idfudiag1.c φ C Cat
idfudiag1.b B = Base C
idfudiag1.x φ X B
idfudiag1.k K = 1 st L X
idfudiag1.e φ I = K
Assertion idfudiag1bas φ B = X

Proof

Step Hyp Ref Expression
1 idfudiag1.i I = id func C
2 idfudiag1.l L = C Δ func C
3 idfudiag1.c φ C Cat
4 idfudiag1.b B = Base C
5 idfudiag1.x φ X B
6 idfudiag1.k K = 1 st L X
7 idfudiag1.e φ I = K
8 eqid Hom C = Hom C
9 1 4 3 8 idfuval φ I = I B p B × B I Hom C p
10 eqid Id C = Id C
11 2 3 3 4 5 6 4 8 10 diag1a φ K = B × X y B , z B y Hom C z × Id C X
12 7 9 11 3eqtr3d φ I B p B × B I Hom C p = B × X y B , z B y Hom C z × Id C X
13 4 fvexi B V
14 resiexg B V I B V
15 13 14 ax-mp I B V
16 13 13 xpex B × B V
17 16 mptex p B × B I Hom C p V
18 15 17 opth1 I B p B × B I Hom C p = B × X y B , z B y Hom C z × Id C X I B = B × X
19 12 18 syl φ I B = B × X
20 5 ne0d φ B
21 19 20 idfudiag1lem φ B = X